11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glia-Derived Extracellular Vesicles in Parkinson’s Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glial cells are fundamental players in the central nervous system (CNS) development and homeostasis, both in health and disease states. In Parkinson’s disease (PD), a dysfunctional glia-neuron crosstalk represents a common final pathway contributing to the chronic and progressive death of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc). Notably, glial cells communicating with each other by an array of molecules, can acquire a “beneficial” or “destructive” phenotype, thereby enhancing neuronal death/vulnerability and/or exerting critical neuroprotective and neuroreparative functions, with mechanisms that are actively investigated. An important way of delivering messenger molecules within this glia-neuron cross-talk consists in the secretion of extracellular vesicles (EVs). EVs are nano-sized membranous particles able to convey a wide range of molecular cargoes in a controlled way, depending on the specific donor cell and the microenvironmental milieu. Given the dual role of glia in PD, glia-derived EVs may deliver molecules carrying various messages for the vulnerable/dysfunctional DAergic neurons. Here, we summarize the state-of-the-art of glial-neuron interactions and glia-derived EVs in PD. Also, EVs have the ability to cross the blood brain barrier (BBB), thus acting both within the CNS and outside, in the periphery. In these regards, this review discloses the emerging applications of EVs, with a special focus on glia-derived EVs as potential carriers of new biomarkers and nanotherapeutics for PD.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis

          The use of extracellular vesicles, specifically exosomes, as carriers of biomarkers in extracellular spaces has been well demonstrated. Despite their promising potential, the use of exosomes in the clinical setting is restricted due to the lack of standardization in exosome isolation and analysis methods. The purpose of this review is to not only introduce the different types of extracellular vesicles but also to summarize their differences and similarities, and discuss different methods of exosome isolation and analysis currently used. A thorough understanding of the isolation and analysis methods currently being used could lead to some standardization in the field of exosomal research, allowing the use of exosomes in the clinical setting to become a reality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia Function in the Central Nervous System During Health and Neurodegeneration.

            Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.

              The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                21 June 2020
                June 2020
                : 9
                : 6
                : 1941
                Affiliations
                [1 ]Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; loredanaleggio@ 123456unict.it (L.L.); silvia.vivarelli7@ 123456gmail.com (S.V.); greta.paterno.gp@ 123456gmail.com (G.P.); serapide@ 123456unict.it (M.F.S.)
                [2 ]Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; flepiscopo@ 123456oasi.en.it (F.L.); ctirolo@ 123456oasi.en.it (C.T.); carmelagiachino@ 123456libero.it (C.G.); scaniglia@ 123456oasi.en.it (S.C.)
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-9287-8448
                https://orcid.org/0000-0003-3292-9677
                https://orcid.org/0000-0001-9363-6523
                https://orcid.org/0000-0001-6332-4772
                https://orcid.org/0000-0003-2146-9329
                Article
                jcm-09-01941
                10.3390/jcm9061941
                7356371
                32575923
                490d0970-c16a-4cbc-91df-308f41fec9c3
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 May 2020
                : 17 June 2020
                Categories
                Review

                glia,extracellular vesicles,exosomes,cell-to-cell communication,biomarkers,nanotherapeutics,parkinson’s disease

                Comments

                Comment on this article