7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.

      1 , , , ,
      Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Moon is thought to have formed from debris ejected by a giant impact with the early 'proto'-Earth and, as a result of the high energies involved, the Moon would have melted to form a magma ocean. The timescales for formation and solidification of the Moon can be quantified by using 182Hf-182W and 146Sm-142Nd chronometry, but these methods have yielded contradicting results. In earlier studies, 182W anomalies in lunar rocks were attributed to decay of 182Hf within the lunar mantle and were used to infer that the Moon solidified within the first approximately 60 million years of the Solar System. However, the dominant 182W component in most lunar rocks reflects cosmogenic production mainly by neutron capture of 181Ta during cosmic-ray exposure of the lunar surface, compromising a reliable interpretation in terms of 182Hf-182W chronometry. Here we present tungsten isotope data for lunar metals that do not contain any measurable Ta-derived 182W. All metals have identical 182W/184W ratios, indicating that the lunar magma ocean did not crystallize within the first approximately 60 Myr of the Solar System, which is no longer inconsistent with Sm-Nd chronometry. Our new data reveal that the lunar and terrestrial mantles have identical 182W/184W. This, in conjunction with 147Sm-143Nd ages for the oldest lunar rocks, constrains the age of the Moon and Earth to Myr after formation of the Solar System. The identical 182W/184W ratios of the lunar and terrestrial mantles require either that the Moon is derived mainly from terrestrial material or that tungsten isotopes in the Moon and Earth's mantle equilibrated in the aftermath of the giant impact, as has been proposed to account for identical oxygen isotope compositions of the Earth and Moon.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          1476-4687
          0028-0836
          Dec 20 2007
          : 450
          : 7173
          Affiliations
          [1 ] Institute for Isotope Geochemistry and Mineral Resources, Department of Earth Sciences, Eidgenössische Technische Hochschule Zurich, Clausiusstrasse 25, 8092 Zurich, Switzerland. touboul@erdw.ethz.ch
          Article
          nature06428
          10.1038/nature06428
          18097403
          49102bbf-c4b9-4593-9d05-763f36dfd7e4
          History

          Comments

          Comment on this article