11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms

      1 , 1
      Journal of Cellular Physiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic-metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2-ARE pathway and AhR-XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

            Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis

              Cancer cells are hallmarked by high proliferation and imbalanced redox consumption and signaling. Various oncogenic pathways such as proliferation and evading cell death converge on redox-dependent signaling processes. Nrf2 is a key regulator in these redox-dependent events and operates in cytoprotection, drug metabolism and malignant progression in cancer cells. Here, we show that patients with primary malignant brain tumors (glioblastomas, WHO °IV gliomas, GBM) have a devastating outcome and overall reduced survival when Nrf2 levels are upregulated. Nrf2 overexpression or Keap1 knockdown in glioma cells accelerate proliferation and oncogenic transformation. Further, activation of the Nrf2-Keap1 signaling upregulates xCT (aka SLC7A11 or system Xc −) and amplifies glutamate secretion thereby impacting on the tumor microenvironment. Moreover, both fostered Nrf2 expression and conversely Keap1 inhibition promote resistance to ferroptosis. Altogether, the Nrf2-Keap1 pathway operates as a switch for malignancy in gliomas promoting cell proliferation and resistance to cell death processes such as ferroptosis. Our data demonstrate that the Nrf2-Keap1 pathway is critical for cancer cell growth and operates on xCT. Nrf2 presents the Achilles’ heel of cancer cells and thus provides a valid therapeutic target for sensitizing cancer for chemotherapeutics.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Physiology
                J Cell Physiol
                Wiley
                0021-9541
                1097-4652
                October 14 2019
                April 2020
                September 23 2019
                April 2020
                : 235
                : 4
                : 3119-3130
                Affiliations
                [1 ]Department of Zoology, Toxicology and Cancer Biology LaboratoryVisva‐BharatiSantiniketan West Bengal India
                Article
                10.1002/jcp.29219
                31549397
                4916fdf2-4d49-47be-8852-74a2a9d924e4
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article