2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a Quorum Sensing-Dependent Communication Pathway Mediating Bacteria-Gut-Brain Cross Talk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Despite recently established contributions of the intestinal microbiome to human health and disease, our understanding of bacteria-host communication pathways with regard to the gut-brain axis remains limited. Here we provide evidence that intestinal neurons are able to “sense” bacteria independently of the host immune system. Using supernatants from cultures of the opportunistic pathogen Staphylococcus aureus ( S. aureus) we demonstrate the release of mediators with neuromodulatory properties at high population density. These mediators induced a biphasic response in extrinsic sensory afferent nerves, increased membrane permeability in cultured sensory neurons, and altered intestinal motility and secretion. Genetic manipulation of S. aureus revealed two key quorum sensing-regulated classes of pore forming toxins that mediate excitation and inhibition of extrinsic sensory nerves, respectively. As such, bacterial mediators have the potential to directly modulate gut-brain communication to influence intestinal symptoms and reflex function in vivo, contributing to homeostatic, behavioral, and sensory consequences of infection.

          Graphical Abstract

          Highlights

          • Quorum sensing-regulated secretions modulate intestinal neurons, secretion, and motility

          • Intestinal neurons are able to “sense” bacteria independently of the host immune system

          • Excitation and inhibition of intestinal afferents is mediated by pore-forming toxins

          • Bacterial mediators directly influence microbiota-gut-brain axis signaling pathways

          Abstract

          Neuroscience; Microbiology

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.

            There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABA(B1b) mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expression in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes

              ABSTRACT To enhance the research capabilities of investigators interested in Staphylococcus aureus, the Nebraska Center for Staphylococcal Research (CSR) has generated a sequence-defined transposon mutant library consisting of 1,952 strains, each containing a single mutation within a nonessential gene of the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) isolate USA300. To demonstrate the utility of this library for large-scale screening of phenotypic alterations, we spotted the library on indicator plates to assess hemolytic potential, protease production, pigmentation, and mannitol utilization. As expected, we identified many genes known to function in these processes, thus validating the utility of this approach. Importantly, we also identified genes not previously associated with these phenotypes. In total, 71 mutants displayed differential hemolysis activities, the majority of which were not previously known to influence hemolysin production. Furthermore, 62 mutants were defective in protease activity, with only 14 previously demonstrated to be involved in the production of extracellular proteases. In addition, 38 mutations affected pigment formation, while only 7 influenced mannitol fermentation, underscoring the sensitivity of this approach to identify rare phenotypes. Finally, 579 open reading frames were not interrupted by a transposon, thus providing potentially new essential gene targets for subsequent antibacterial discovery. Overall, the Nebraska Transposon Mutant Library represents a valuable new resource for the research community that should greatly enhance investigations of this important human pathogen.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                iScience
                Elsevier
                2589-0042
                17 October 2020
                20 November 2020
                17 October 2020
                : 23
                : 11
                : 101695
                Affiliations
                [1 ]Department of Biomedical Science, University of Sheffield, Sheffield, UK
                [2 ]Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
                [3 ]Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
                [4 ]Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
                [5 ]Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
                [6 ]Florey Institute, University of Sheffield, Sheffield, UK
                Author notes
                []Corresponding author d.grundy@ 123456sheffield.ac.uk
                [7]

                Lead Contact

                Article
                S2589-0042(20)30887-7 101695
                10.1016/j.isci.2020.101695
                7607502
                33163947
                491c4c23-0998-4c84-9dfa-ed9b5665724f
                © 2020 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 May 2020
                : 3 July 2020
                : 14 October 2020
                Categories
                Article

                neuroscience,microbiology
                neuroscience, microbiology

                Comments

                Comment on this article