85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Next-Generation Synthetic Gene Networks

      research-article
      1 , 2 , 3 , 3 , 3 , 4
      Nature biotechnology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field’s first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems, and frameworks for the reliable construction and operation of complex, higher-order networks. Here, we highlight challenges and goals for next-generation synthetic gene networks, in the context of potential applications in medicine, biotechnology, bioremediation, and bioenergy.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

          Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programming cells by multiplex genome engineering and accelerated evolution.

            The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome.

              We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.
                Bookmark

                Author and article information

                Journal
                9604648
                20305
                Nat Biotechnol
                Nat. Biotechnol.
                Nature biotechnology
                1087-0156
                1546-1696
                27 November 2009
                December 2009
                01 June 2010
                : 27
                : 12
                : 1139-1150
                Affiliations
                [1 ]Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room 38-401, Cambridge, MA 02139, USA.
                [2 ]Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Room E25-519, Cambridge, MA 02139, USA.
                [3 ]Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics, and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
                [4 ]Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
                Author notes
                Correspondence should be addressed to T.K.L ( timlu@ 123456mit.edu )
                Article
                NIHMS161413
                10.1038/nbt.1591
                2796205
                20010597
                49227273-19a4-4ac7-a6e7-6dcce3708e94
                History
                Funding
                Funded by: Office of the Director : NIH
                Award ID: DP1 OD003644-03 || OD
                Categories
                Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article