54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas

      research-article
      1 , a , 1 , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The radiation of an electric dipole emitter can be drastically enhanced if the emitter is placed in the nano-gap of a metallic dipole antenna. By assuming that only surface plasmon polaritons (SPPs) are excited on the antenna, we build up an intuitive pure-SPP model that is able to comprehensively predict the electromagnetic features of the antenna radiation, such as the total or radiative emission rate and the far-field radiation pattern. With the model we can distinguish the respective contributions from SPPs and from other surface waves to the antenna radiation. It is found that for antennas with long arms that support higher-order resonances, SPPs provide a dominant contribution to the antenna radiation, while for other cases, the contribution of surface waves other than SPPs should be considered. The model reveals an intuitive picture that the enhancement of the antenna radiation is due to surface waves that are resonantly excited on the two antenna arms and that are further coupled into the nano-gap or scattered into free space. From the model we can derive a phase-matching condition that predicts the antenna resonance and the resultant enhanced radiation. The model is helpful for a physical understanding and intuitive design of antenna devices.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of single optical plasmons in metallic nanowires coupled to quantum dots.

          Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resonant optical antennas.

            We have fabricated nanometer-scale gold dipole antennas designed to be resonant at optical frequencies. On resonance, strong field enhancement in the antenna feed gap leads to white-light supercontinuum generation. The antenna length at resonance is considerably shorter than one-half the wavelength of the incident light. This is in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequencies. Because optical antennas link propagating radiation and confined/enhanced optical fields, they should find applications in optical characterization, manipulation of nanostructures, and optical information processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors

              Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7F j transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 February 2015
                2015
                : 5
                : 8456
                Affiliations
                [1 ]Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University , Tianjin 300071, China
                [2 ]State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University , Tianjin 300072, China
                Author notes
                Article
                srep08456
                10.1038/srep08456
                4326694
                25678191
                496ce960-4a89-4b2c-8ebf-4d84f10b8096
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 September 2014
                : 19 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article