1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantification of Inflammasome Adaptor Protein ASC in Biological Samples by Multiple-Reaction Monitoring Mass Spectrometry

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.

          Given that the leading clinical conditions associated with acute kidney injury (AKI), namely, sepsis, major surgery, heart failure, and hypovolemia, are all associated with shock, it is tempting to attribute all AKI to ischemia on the basis of macrohemodynamic changes. However, an increasing body of evidence has suggested that in many patients, AKI can occur in the absence of overt signs of global renal hypoperfusion. Indeed, sepsis-induced AKI can occur in the setting of normal or even increased renal blood flow. Accordingly, renal injury may not be entirely explained solely on the basis of the classic paradigm of hypoperfusion, and thus other mechanisms must come into play. Herein, we put forward a "unifying theory" to explain the interplay between inflammation and oxidative stress, microvascular dysfunction, and the adaptive response of the tubular epithelial cell to the septic insult. We propose that this response is mostly adaptive in origin, that it is driven by mitochondria, and that it ultimately results in and explains the clinical phenotype of sepsis-induced AKI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome promotes renal inflammation and contributes to CKD.

            Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1β and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1β, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3(-/-) mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1β and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation of ASC acts as a molecular switch controlling the formation of speck-like aggregates and inflammasome activity

              The inflammasome adaptor ASC contributes to innate immunity through the activation of caspase-1. Here we show that Syk and JNK-dependent signaling pathways are required for caspase-1 activation via the ASC-dependent inflammasomes NLRP3 and AIM2. Inhibition of Syk or JNK abolished the formation of ASC specks without affecting interaction of ASC with NLRP3. ASC was phosphorylated during inflammasome activation in a Syk- and JNK-dependent manner, suggesting that Syk and JNK are upstream of ASC phosphorylation. Moreover, phosphorylation of Tyr144 residue in mouse ASC was critical for speck formation and caspase-1 activation. These results suggested that phosphorylation of ASC controls inflammasome activity through ASC speck formation.
                Bookmark

                Author and article information

                Journal
                Inflammation
                Inflammation
                Springer Science and Business Media LLC
                0360-3997
                1573-2576
                August 2018
                June 9 2018
                August 2018
                : 41
                : 4
                : 1396-1408
                Article
                10.1007/s10753-018-0787-6
                496e5912-6120-45de-8a66-f15addc12d2e
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article