8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury.

      Experimental and molecular pathology
      Animals, Drug-Induced Liver Injury, metabolism, Griseofulvin, poisoning, Hepatocytes, Keratin-18, genetics, Keratin-8, chemistry, Liver, physiology, Mice, Mice, Inbred C3H, Phosphorylation, Solubility

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keratins 8 and 18 (K8/18) intermediate filament proteins are believed to play an essential role in the protection of hepatocytes against mechanical and toxic stress. This assertion is mainly based on increased hepatocyte fragility observed in transgenic mice deficient in K8/18, or carrying mutations on K8/18. The molecular mechanism by which keratins accomplish their protective functions has not been totally elucidated. Liver diseases such as alcoholic hepatitis and copper metabolism diseases are associated with modifications, in hepatocytes, of intermediate filament organisation and the formation of K8/18 containing aggregates named Mallory-Denk bodies. Treatment of mice with a diet containing griseofulvin induces the formation of Mallory-Denk bodies in hepatocytes. This provides a reliable animal model for assessing the molecular mechanism by which keratins accomplish their protective role in the response of hepatocytes to chemical injuries. In this study, we found that griseofulvin intoxication induced changes in keratin solubility and that there was a 5% to 25% increase in the relative amounts of soluble keratin. Keratin phosphorylation on specific sites (K8 pS79, K8 pS436 and K18 pS33) was increased and prominent in the insoluble protein fractions. Since at least six K8 phosphoepitopes were detected after GF treatment, phosphorylation sites other than the ones studied need to be accounted for. Immunofluorescence staining showed that K8 pS79 epitope was present in clusters of hepatocytes that surrounded apoptotic cells. Activated p38 MAPK was associated with, but not present in K8 pS79-positive cells. These results indicate that griseofulvin intoxication mediates changes in the physicochemical properties of keratin, which result in the remodelling of keratin intermediate filaments which in turn could modulate the signalling pathways in which they are involved by modifying their binding to signalling proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article