7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatitis C virus and proprotein convertase subtilisin/kexin type 9: a detrimental interaction to increase viral infectivity and disrupt lipid metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From viral binding to the hepatocyte surface to extracellular virion release, the replication cycle of the hepatitis C virus ( HCV) intersects at various levels with lipid metabolism; this leads to a derangement of the lipid profile and to increased viral infectivity. Accumulating evidence supports the crucial regulatory role of proprotein convertase subtilisin/kexin type 9 ( PCSK9) in lipoprotein metabolism. Notably, a complex interaction between HCV and PCSK9 has been documented. Indeed, either increased or reduced circulating PCSK9 levels have been observed in HCV patients; this discrepancy might be related to several confounders, including HCV genotype, human immunodeficiency virus ( HIV) coinfection and the ambiguous HCV‐mediated influence on PCSK9 transcription factors. On the other hand, PCSK9 may itself influence HCV infectivity, inasmuch as the expression of different hepatocyte surface entry proteins and receptors is regulated by PCSK9. The aim of this review is to summarize the current evidence about the complex interaction between HCV and liver lipoprotein metabolism, with a specific focus on PCSK9. The underlying assumption of this review is that the interconnections between HCV and PCSK9 may be central to explain viral infectivity.

          Related collections

          Most cited references 88

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence.

          In efforts to inform public health decision makers, the Global Burden of Diseases, Injuries, and Risk Factors 2010 (GBD2010) Study aims to estimate the burden of disease using available parameters. This study was conducted to collect and analyze available prevalence data to be used for estimating the hepatitis C virus (HCV) burden of disease. In this systematic review, antibody to HCV (anti-HCV) seroprevalence data from 232 articles were pooled to estimate age-specific seroprevalence curves in 1990 and 2005, and to produce age-standardized prevalence estimates for each of 21 GBD regions using a model-based meta-analysis. This review finds that globally the prevalence and number of people with anti-HCV has increased from 2.3% (95% uncertainty interval [UI]: 2.1%-2.5%) to 2.8% (95% UI: 2.6%-3.1%) and >122 million to >185 million between 1990 and 2005. Central and East Asia and North Africa/Middle East are estimated to have high prevalence (>3.5%); South and Southeast Asia, sub-Saharan Africa, Andean, Central, and Southern Latin America, Caribbean, Oceania, Australasia, and Central, Eastern, and Western Europe have moderate prevalence (1.5%-3.5%); whereas Asia Pacific, Tropical Latin America, and North America have low prevalence (<1.5%). The high prevalence of global HCV infection necessitates renewed efforts in primary prevention, including vaccine development, as well as new approaches to secondary and tertiary prevention to reduce the burden of chronic liver disease and to improve survival for those who already have evidence of liver disease. Copyright © 2012 American Association for the Study of Liver Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.

            A random-primed complementary DNA library was constructed from plasma containing the uncharacterized non-A, non-B hepatitis (NANBH) agent and screened with serum from a patient diagnosed with NANBH. A complementary DNA clone was isolated that was shown to encode an antigen associated specifically with NANBH infections. This clone is not derived from host DNA but from an RNA molecule present in NANBH infections that consists of at least 10,000 nucleotides and that is positive-stranded with respect to the encoded NANBH antigen. These data indicate that this clone is derived from the genome of the NANBH agent and are consistent with the agent being similar to the togaviridae or flaviviridae. This molecular approach should be of great value in the isolation and characterization of other unidentified infectious agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipid droplet is an important organelle for hepatitis C virus production.

              The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
                Bookmark

                Author and article information

                Contributors
                matteo.pirro@unipg.it
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                18 July 2017
                December 2017
                : 21
                : 12 ( doiID: 10.1111/jcmm.2017.21.issue-12 )
                : 3150-3161
                Affiliations
                [ 1 ] Unit of Internal Medicine Department of Medicine University of Perugia Perugia Italy
                [ 2 ] Unit of Infectious Diseases Department of Medicine University of Perugia Perugia Italy
                [ 3 ] Biotechnology Research Center Mashhad University of Medical Sciences Mashhad Iran
                Author notes
                [*] [* ] Correspondence to: Matteo PIRRO, M.D., Ph.D.

                E‐mail: matteo.pirro@ 123456unipg.it

                Article
                JCMM13273
                10.1111/jcmm.13273
                5706572
                28722331
                497e011a-fcf3-402a-a01c-1d09e1bb5eeb
                © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 1, Tables: 1, Pages: 12, Words: 9820
                Product
                Categories
                Review
                Reviews
                Custom metadata
                2.0
                jcmm13273
                December 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.6.1 mode:remove_FC converted:29.11.2017

                Comments

                Comment on this article