13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin-orbit coupling in quantum gases

          Spin-orbit coupling links a particle's velocity to its quantum mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin-orbit coupling originates from the movement of electrons in a crystal's intrinsic electric field, which is uniquely prescribed. In contrast, for ultracold atomic systems, the engineered "material parameters" are tuneable: a variety of synthetic spin-orbit couplings can be engineered on demand using laser fields. Here we outline the current experimental and theoretical status of spin-orbit coupling in ultracold atomic systems, discussing unique features that enable physics impossible in any other known setting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Majorana fermions in equilibrium and in driven cold-atom quantum wires.

            We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hydrodynamics with Triangle Anomalies

              , (2013)
              We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserve current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomalies coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy ion collisions.
                Bookmark

                Author and article information

                Journal
                10.1038/srep20601
                1506.03590
                26868084
                4751543
                http://creativecommons.org/licenses/by/4.0/

                Quantum gases & Cold atoms,High energy & Particle physics,Nanophysics,Nuclear physics

                Comments

                Comment on this article