1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            • Record: found
            • Abstract: not found
            • Article: not found

            An introduction to ROC analysis

              • Record: found
              • Abstract: not found
              • Article: not found

              The use of the area under the ROC curve in the evaluation of machine learning algorithms

                Author and article information

                Contributors
                wxs_sky@outlook.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 September 2023
                8 September 2023
                2023
                : 13
                : 14876
                Affiliations
                GRID grid.495325.c, ISNI 0000 0004 0508 5971, The Second Academy of China Aerospace Science and Industry Corporation (CASIC), ; 50 Yongding Road, Haidian District, Beijing, China
                Article
                41537
                10.1038/s41598-023-41537-z
                10491650
                37684278
                499024c8-5ea5-4e6e-8d19-a0999619f067
                © Springer Nature Limited 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 May 2023
                : 28 August 2023
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                computational neuroscience,network models,computational biology and bioinformatics,neuroscience,diseases

                Comments

                Comment on this article

                Related Documents Log