10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of phylodynamic model specifications on parameter estimates of the Zika virus epidemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Each new virus introduced into the human population could potentially spread and cause a worldwide epidemic. Thus, early quantification of epidemic spread is crucial. Real-time sequencing followed by Bayesian phylodynamic analysis has proven to be extremely informative in this respect. Bayesian phylodynamic analyses require a model to be chosen and prior distributions on model parameters to be specified. We study here how choices regarding the tree prior influence quantification of epidemic spread in an emerging epidemic by focusing on estimates of the parameters clock rate, tree height, and reproductive number in the currently ongoing Zika virus epidemic in the Americas. While parameter estimates are quite robust to reasonable variations in the model settings when studying the complete data set, it is impossible to obtain unequivocal estimates when reducing the data to local Zika epidemics in Brazil and Florida, USA. Beyond the empirical insights, this study highlights the conceptual differences between the so-called birth–death and coalescent tree priors: while sequence sampling times alone can strongly inform the tree height and reproductive number under a birth–death model, the coalescent tree height prior is typically only slightly influenced by this information. Such conceptual differences together with non-trivial interactions of different priors complicate proper interpretation of empirical results. Overall, our findings indicate that phylodynamic analyses of early viral spread data must be carried out with care as data sets may not necessarily be informative enough yet to provide estimates robust to prior settings. It is necessary to do a robustness check of these data sets by scanning several models and prior distributions. Only if the posterior distributions are robust to reasonable changes of the prior distribution, the parameter estimates can be trusted. Such robustness tests will help making real-time phylodynamic analyses of spreading epidemic more reliable in the future.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          GLUMIP 2.0: SAS/IML Software for Planning Internal Pilots.

          Internal pilot designs involve conducting interim power analysis (without interim data analysis) to modify the final sample size. Recently developed techniques have been described to avoid the type I error rate inflation inherent to unadjusted hypothesis tests, while still providing the advantages of an internal pilot design. We present GLUMIP 2.0, the latest version of our free SAS/IML software for planning internal pilot studies in the general linear univariate model (GLUM) framework. The new analytic forms incorporated into the updated software solve many problems inherent to current internal pilot techniques for linear models with Gaussian errors. Hence, the GLUMIP 2.0 software makes it easy to perform exact power analysis for internal pilots under the GLUM framework with independent Gaussian errors and fixed predictors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sampling-through-time in birth-death trees.

            I consider the constant rate birth-death process with incomplete sampling. I calculate the density of a given tree with sampled extant and extinct individuals. This density is essential for analyzing datasets which are sampled through time. Such datasets are common in virus epidemiology as viruses in infected individuals are sampled through time. Further, such datasets appear in phylogenetics when extant and extinct species data is available. I show how the derived tree density can be used (i) as a tree prior in a Bayesian method to reconstruct the evolutionary past of the sequence data on a calender-timescale, (ii) to infer the birth- and death-rates for a reconstructed evolutionary tree, and (iii) for simulating trees with a given number of sampled extant and extinct individuals which is essential for testing evolutionary hypotheses for the considered datasets. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013.

              Zika fever, considered as an emerging disease of arboviral origin, because of its expanding geographic area, is known as a benign infection usually presenting as an influenza-like illness with cutaneous rash. So far, Zika virus infection has never led to hospitalisation. We describe the first case of Guillain-Barré syndrome (GBS) occurring immediately after a Zika virus infection, during the current Zika and type 1 and 3 dengue fever co-epidemics in French Polynesia.
                Bookmark

                Author and article information

                Journal
                Virus Evol
                Virus Evol
                vevolu
                Virus Evolution
                Oxford University Press
                2057-1577
                January 2018
                29 January 2018
                29 January 2018
                : 4
                : 1
                : vex044
                Affiliations
                [1 ]Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse, 4058 Basel, Switzerland
                [2 ]Swiss Institute of Bioinformatics (SIB), Switzerland
                Author notes
                Corresponding authors: E-mail: veronika.boskova@ 123456bsse.ethz.ch (V.B.)

                Tanja Stadler, Carsten Magnus contributed equally and are shared last authors.

                Author information
                http://orcid.org/0000-0003-1125-2783
                Article
                vex044
                10.1093/ve/vex044
                5789282
                29403651
                499bf81d-2db9-4b0d-aa23-41e11e83853c
                © The Author(s) 2018. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Research Article

                tree height,substitution rate,tree prior,molecular epidemiology,start of epidemic

                Comments

                Comment on this article