11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure.

          DOI: http://dx.doi.org/10.7554/eLife.24081.001

          eLife digest

          The heart needs to pump out the same volume of blood that enters it. This is not as simple as it sounds, as changes in heart rate – for example, in response to exercise – alter how hard the heart must pump.

          When blood flows into the heart it stretches the heart muscle, which consists of units called sarcomeres. Sarcomeres contain two types of protein filament, known as thick filaments and thin filaments. When a heartbeat is triggered by calcium ions flowing into the heart muscle cells, the thick filaments slide over the thin filaments. This causes the heart muscle cell to contract.

          The Frank–Starling mechanism helps to regulate the contraction of the heart. This mechanism has two aspects. Firstly, as the sarcomere lengthens, its protein filaments are able to contract with more force for a given high level of calcium ions. Secondly, the lengthening of the sarcomere makes the filaments more sensitive to calcium ions, which again causes the heart to contract more forcefully. However, the molecular mechanisms that underlie these effects were not clear.

          Zhang et al. have now studied rat heart muscle cells using a new fluorescence-based method that can detect structural changes in the thick and thin filaments. The results show that the increased force that is generated when sarcomeres are stretched can be accounted for by changes in the structure of the thick filament. In contrast, the increase in calcium sensitivity that occurs as the sarcomere lengthens is largely due to structural alterations in the thin filament. These two processes can be controlled independently, but work together in the Frank–Starling mechanism.

          Now that we better understand the molecular basis of the Frank–Starling mechanism, further work could investigate new strategies for designing and testing treatments for heart disease.

          DOI: http://dx.doi.org/10.7554/eLife.24081.002

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of contraction in striated muscle.

          Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form.

            Troponin is essential in Ca(2+) regulation of skeletal and cardiac muscle contraction. It consists of three subunits (TnT, TnC and TnI) and, together with tropomyosin, is located on the actin filament. Here we present crystal structures of the core domains (relative molecular mass of 46,000 and 52,000) of human cardiac troponin in the Ca(2+)-saturated form. Analysis of the four-molecule structures reveals that the core domain is further divided into structurally distinct subdomains that are connected by flexible linkers, making the entire molecule highly flexible. The alpha-helical coiled-coil formed between TnT and TnI is integrated in a rigid and asymmetric structure (about 80 angstrom long), the IT arm, which bridges putative tropomyosin-anchoring regions. The structures of the troponin ternary complex imply that Ca(2+) binding to the regulatory site of TnC removes the carboxy-terminal portion of TnI from actin, thereby altering the mobility and/or flexibility of troponin and tropomyosin on the actin filament.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments.

              Contraction of both skeletal muscle and the heart is thought to be controlled by a calcium-dependent structural change in the actin-containing thin filaments, which permits the binding of myosin motors from the neighbouring thick filaments to drive filament sliding. Here we show by synchrotron small-angle X-ray diffraction of frog (Rana temporaria) single skeletal muscle cells that, although the well-known thin-filament mechanism is sufficient for regulation of muscle shortening against low load, force generation against high load requires a second permissive step linked to a change in the structure of the thick filament. The resting (switched 'OFF') structure of the thick filament is characterized by helical tracks of myosin motors on the filament surface and a short backbone periodicity. This OFF structure is almost completely preserved during low-load shortening, which is driven by a small fraction of constitutively active (switched 'ON') myosin motors outside thick-filament control. At higher load, these motors generate sufficient thick-filament stress to trigger the transition to its long-periodicity ON structure, unlocking the major population of motors required for high-load contraction. This concept of the thick filament as a regulatory mechanosensor provides a novel explanation for the dynamic and energetic properties of skeletal muscle. A similar mechanism probably operates in the heart.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                23 February 2017
                2017
                : 6
                : e24081
                Affiliations
                [1 ]deptRandall Division of Cell and Molecular Biophysics , King’s College London , London, United Kingdom
                [2 ]deptBritish Heart Foundation Centre of Research Excellence , King's College London , London, United Kingdom
                [3]Stanford University School of Medicine , United States
                [4]Stanford University School of Medicine , United States
                Author notes
                Author information
                http://orcid.org/0000-0002-4992-8198
                Article
                24081
                10.7554/eLife.24081
                5365314
                28229860
                49a4299d-06d8-497e-83f5-6653c3921921
                © 2017, Zhang et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 08 December 2016
                : 20 February 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Award ID: FS/15/1/31071
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Award ID: FS/09/001/26329
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biophysics and Structural Biology
                Custom metadata
                2.5
                The Frank–Starling law of the heart and its underlying mechanism of length-dependent activation involve distinctive structural changes in both the thin and thick filaments of cardiac muscle cells.

                Life sciences
                cardiac muscle regulation,fluorescence polarization,length-dependent activation,thin filament,thick filament,frank-starling law of the heart,rat

                Comments

                Comment on this article