31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by 223Ra compared to 188Re and 99mTc modulated by the radical scavenger dimethyl sulfoxide (DMSO).

          Methods

          Radioactive solutions of 223Ra, 188Re, or 99mTc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay.

          Results

          Exposure to 120 Gy of 223Ra, 188Re, or 99mTc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy 223Ra and 500 Gy 188Re or 99mTc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter 223Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with 223Ra, 188Re, and 99mTc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for 223Ra, 188Re, and 99mTc, respectively.

          Conclusions

          For 223Ra, as well as for 188Re and 99mTc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13550-016-0203-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.

          The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle emitter therapy and to provide guidance and recommendations for human alpha-particle emitter dosimetry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dimethyl sulphoxide: a review of its applications in cell biology.

            Dimethyl sulphoxide is a water miscible solvent that has wide applications in cell biology. It acts as a cryoprotective agent in a variety of cells and tissues allowing prolonged storage at subzero temperatures. The action of dimethyl sulphoxide on the stability of the liquid matrix of cell membranes appears to be responsible for its effects and this appears also to be true for related effects on membrane permeability and fusion. Dimethyl sulphoxide is also known to act as an inducer of cellular differentiation and as a free radical scavenger and radioprotectant. A review of the underlying molecular basis of all these effects of dimethyl sulphoxide is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death.

              The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.
                Bookmark

                Author and article information

                Contributors
                roswitha.runge@uniklinikum-dresden.de
                Journal
                EJNMMI Res
                EJNMMI Res
                EJNMMI Research
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-219X
                3 June 2016
                3 June 2016
                2016
                : 6
                : 48
                Affiliations
                Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
                Article
                203
                10.1186/s13550-016-0203-x
                4893047
                27259575
                49b2736b-e38d-440b-b996-09c2fef08d06
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 March 2016
                : 26 May 2016
                Categories
                Original Research
                Custom metadata
                © The Author(s) 2016

                Radiology & Imaging
                α-emitter,let,plasmid dna,cellular survival,dmso
                Radiology & Imaging
                α-emitter, let, plasmid dna, cellular survival, dmso

                Comments

                Comment on this article