+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by 223Ra compared to 188Re and 99mTc modulated by the radical scavenger dimethyl sulfoxide (DMSO).


          Radioactive solutions of 223Ra, 188Re, or 99mTc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay.


          Exposure to 120 Gy of 223Ra, 188Re, or 99mTc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy 223Ra and 500 Gy 188Re or 99mTc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter 223Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with 223Ra, 188Re, and 99mTc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for 223Ra, 188Re, and 99mTc, respectively.


          For 223Ra, as well as for 188Re and 99mTc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13550-016-0203-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Clonogenic assay of cells in vitro.

          Clonogenic assay or colony formation assay is an in vitro cell survival assay based on the ability of a single cell to grow into a colony. The colony is defined to consist of at least 50 cells. The assay essentially tests every cell in the population for its ability to undergo "unlimited" division. Clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determine the effectiveness of other cytotoxic agents. Only a fraction of seeded cells retains the capacity to produce colonies. Before or after treatment, cells are seeded out in appropriate dilutions to form colonies in 1-3 weeks. Colonies are fixed with glutaraldehyde (6.0% v/v), stained with crystal violet (0.5% w/v) and counted using a stereomicroscope. A method for the analysis of radiation dose-survival curves is included.
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha emitter radium-223 and survival in metastatic prostate cancer.

            Radium-223 dichloride (radium-223), an alpha emitter, selectively targets bone metastases with alpha particles. We assessed the efficacy and safety of radium-223 as compared with placebo, in addition to the best standard of care, in men with castration-resistant prostate cancer and bone metastases. In our phase 3, randomized, double-blind, placebo-controlled study, we randomly assigned 921 patients who had received, were not eligible to receive, or declined docetaxel, in a 2:1 ratio, to receive six injections of radium-223 (at a dose of 50 kBq per kilogram of body weight intravenously) or matching placebo; one injection was administered every 4 weeks. In addition, all patients received the best standard of care. The primary end point was overall survival. The main secondary efficacy end points included time to the first symptomatic skeletal event and various biochemical end points. A prespecified interim analysis, conducted when 314 deaths had occurred, assessed the effect of radium-223 versus placebo on survival. An updated analysis, when 528 deaths had occurred, was performed before crossover from placebo to radium-223. At the interim analysis, which involved 809 patients, radium-223, as compared with placebo, significantly improved overall survival (median, 14.0 months vs. 11.2 months; hazard ratio, 0.70; 95% confidence interval [CI], 0.55 to 0.88; two-sided P=0.002). The updated analysis involving 921 patients confirmed the radium-223 survival benefit (median, 14.9 months vs. 11.3 months; hazard ratio, 0.70; 95% CI, 0.58 to 0.83; P<0.001). Assessments of all main secondary efficacy end points also showed a benefit of radium-233 as compared with placebo. Radium-223 was associated with low myelosuppression rates and fewer adverse events. In this study, which was terminated for efficacy at the prespecified interim analysis, radium-223 improved overall survival. (Funded by Algeta and Bayer HealthCare Pharmaceuticals; ALSYMPCA number, NCT00699751.).
              • Record: found
              • Abstract: found
              • Article: not found

              MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.

              The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle emitter therapy and to provide guidance and recommendations for human alpha-particle emitter dosimetry.

                Author and article information

                Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
                EJNMMI Res
                EJNMMI Res
                EJNMMI Research
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                3 June 2016
                3 June 2016
                : 6
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Original Research
                Custom metadata
                © The Author(s) 2016

                Radiology & Imaging

                dmso, cellular survival, plasmid dna, let, α-emitter


                Comment on this article