173
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global diversity and geography of soil fungi

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Science

      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

          A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global dispersal of free-living microbial eukaryote species.

            The abundance of individuals in microbial species is so large that dispersal is rarely (if ever) restricted by geographical barriers. This "ubiquitous" dispersal requires an alternative view of the scale and dynamics of biodiversity at the microbial level, wherein global species number is relatively low and local species richness is always sufficient to drive ecosystem functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterns and processes of microbial community assembly.

              Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183-206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                November 27 2014
                November 28 2014
                November 27 2014
                November 28 2014
                : 346
                : 6213
                : 1256688
                Article
                10.1126/science.1256688
                25430773
                49c1978b-cece-47a4-abab-d1aa64f33d95
                © 2014

                Comments

                Comment on this article