45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1–ATP–Mg 2+ complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

          Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Driving ribosome assembly.

            Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits.

              Assembly factors (AFs) prevent premature translation initiation on small (40S) ribosomal subunit assembly intermediates by blocking ligand binding. However, it is unclear how AFs are displaced from maturing 40S ribosomes, if or how maturing subunits are assessed for fidelity, and what prevents premature translation initiation once AFs dissociate. Here we show that maturation involves a translation-like cycle whereby the translation factor eIF5B, a GTPase, promotes joining of large (60S) subunits with pre-40S subunits to give 80S-like complexes, which are subsequently disassembled by the termination factor Rli1, an ATPase. The AFs Tsr1 and Rio2 block the mRNA channel and initiator tRNA binding site, and therefore 80S-like ribosomes lack mRNA or initiator tRNA. After Tsr1 and Rio2 dissociate from 80S-like complexes Rli1-directed displacement of 60S subunits allows for translation initiation. This cycle thus provides a functional test of 60S subunit binding and the GTPase site before ribosomes enter the translating pool. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                URI : http://orcid.org/0000-0002-0522-843X
                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 September 2014
                21 June 2014
                21 June 2014
                : 42
                : 13
                : 8635-8647
                Affiliations
                [1 ]Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
                [2 ]Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany
                [3 ]Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
                [4 ]University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +49 941 9432539; Fax: +49 941 9432474; Email: sebastien.ferreira-cerca@ 123456ur.de
                Correspondence may also be addressed to Ed Hurt. Tel: +49 6221 544173; Fax: +49 6221 544369; Email: ed.hurt@ 123456bzh.uni-heidelberg.de
                Correspondence may also be addressed to Nicole LaRonde. Tel: +1 301 405 0462; Fax: +1 301 405 9377; Email: nlaronde@ 123456umd.edu
                Article
                10.1093/nar/gku542
                4117770
                24948609
                49cabaa1-ee79-4e4e-b685-ecefa9d70c05
                © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 04 June 2014
                : 02 June 2014
                : 25 February 2014
                Page count
                Pages: 13
                Categories
                RNA
                Custom metadata
                2014

                Genetics
                Genetics

                Comments

                Comment on this article