4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070

      Preprint
      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics. Here we report the unusual decrease of the reflection fraction in MAXI J1820+070, which is the ratio of the coronal intensity illuminating the disk to the coronal intensity reaching the observer, as the corona is observed to contrast during the decay phase. We postulate a jet-like corona model, in which the corona can be understood as a standing shock where the material flowing through. In this dynamical scenario, the decrease of the reflection fraction is a signature of the corona's bulk velocity. Our findings suggest that as the corona is observed to get closer to the black hole, the coronal material might be outflowing faster.

          Related collections

          Author and article information

          Journal
          15 February 2021
          Article
          10.1038/s41467-021-21169-5
          2102.07602
          49d15862-0a8b-40dc-a95d-5beb4d2f0c6c

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          11 pages, 5 figures; published in Nature Communications, open access at https://www.nature.com/articles/s41467-021-21169-5; An artist's impression of Figure 5 is updated here, and the animation is available at http://youbei.work/research/
          astro-ph.HE astro-ph.GA

          Galaxy astrophysics,High energy astrophysical phenomena
          Galaxy astrophysics, High energy astrophysical phenomena

          Comments

          Comment on this article

          Related Documents Log