24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climate change to severely impact West African basin scale irrigation in 2 °C and 1.5 °C global warming scenarios

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          West Africa is in general limited to rainfed agriculture. It lacks irrigation opportunities and technologies that are applied in many economically developed nations. A warming climate along with an increasing population and wealth has the potential to further strain the region’s potential to meet future food needs. In this study, we investigate West Africa’s hydrological potential to increase agricultural productivity through the implementation of large-scale water storage and irrigation. A 23-member ensemble of Regional Climate Models is applied to assess changes in hydrologically relevant variables under 2 °C and 1.5 °C global warming scenarios according to the UNFCCC 2015 Conference of Parties (COP 21) agreement. Changes in crop water demand, irrigation water need, water availability and the difference between water availability and irrigation water needs, here referred as basin potential, are presented for ten major river basins covering entire West Africa. Under the 2 °C scenario, crop water demand and irrigation water needs are projected to substantially increase with the largest changes in the Sahel and Gulf of Guinea respectively. At the same time, irrigation potential, which is directly controlled by the climate, is projected to decrease even in regions where water availability increases. This indicates that West African river basins will likely face severe freshwater shortages thus limiting sustainable agriculture. We conclude a general decline in the basin-scale irrigation potential in the event of large-scale irrigation development under 2 °C global warming. Reducing the warming to 1.5 °C decreases these impacts by as much as 50%, suggesting that the region of West Africa clearly benefits from efforts of enhanced mitigation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C

            Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 °C and 2 °C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 °C and 2 °C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 °C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 °C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90 % in 2050 and projected to decline to 70 % by 2100 for a 1.5 °C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9 % to 17 % between 1.5 °C and 2 °C, and the projected lengthening of regional dry spells increases from 7 to 11 %. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50 cm rise by 2100 relative to year 2000-levels for a 2 °C scenario, and about 10 cm lower levels for a 1.5 °C scenario. In a 1.5 °C scenario, the rate of sea-level rise in 2100 would be reduced by about 30 % compared to a 2 °C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 °C and 2 °C warming.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global river discharge and water temperature under climate change

                Bookmark

                Author and article information

                Contributors
                syllabamba@yahoo.fr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 September 2018
                26 September 2018
                2018
                : 8
                : 14395
                Affiliations
                [1 ]West African Science Service Center on Climate Change and Adapted Landuse (WASCAL), Competence Center, Ouagadougou, Burkina Faso
                [2 ]ISNI 0000 0001 2194 9184, GRID grid.259256.f, Department of Civil Engineering and Environmental Science, Loyola Marymount University, Los Angeles, ; California, USA
                [3 ]West African Science Service Center on Climate Change and Adapted Landuse (WASCAL), Graduate Research Program on West African Climate System, Federal University of Technology – Akure (FUTA), Akure, Nigeria
                [4 ]ISNI 0000 0001 2184 9917, GRID grid.419330.c, International Centre for Theoretical Physics (ICTP), Earth System Physics Section, ; Trieste, Italy
                [5 ]ISNI 0000 0001 0075 5874, GRID grid.7892.4, Karlsruhe Institute of Technology, Campus Alpin, Institute of Meteorology and Climate Research, Department of Atmospheric Environmental Research (IMK-IFU), ; Garmisch-Partenkirchen, Germany
                [6 ]ISNI 0000 0001 2108 9006, GRID grid.7307.3, University of Augsburg, Institute of Geography, ; Augsburg, Germany
                Author information
                http://orcid.org/0000-0002-5566-0538
                http://orcid.org/0000-0001-5536-9700
                Article
                32736
                10.1038/s41598-018-32736-0
                6158170
                30258078
                49d345fe-c26e-48f9-aee2-4106e5babf46
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 August 2017
                : 7 September 2018
                Funding
                Funded by: German Ministry of Education and Research (BMBF)
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article