6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of Acrosome Biogenesis in Mammals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During sexual reproduction, two haploid gametes fuse to form the zygote, and the acrosome is essential to this fusion process (fertilization) in animals. The acrosome is a special kind of organelle with a cap-like structure that covers the anterior portion of the head of the spermatozoon. The acrosome is derived from the Golgi apparatus and contains digestive enzymes. With the progress of our understanding of acrosome biogenesis, a number of models have been proposed to address the origin of the acrosome. The acrosome has been regarded as a lysosome-related organelle, and it has been proposed to have originated from the lysosome or the autolysosome. Our review will provide a brief historical overview and highlight recent findings on acrosome biogenesis in mammals.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          EEA1 links PI(3)K function to Rab5 regulation of endosome fusion.

          GTPases and lipid kinases regulate membrane traffic along the endocytic pathway by mechanisms that are not completely understood. Fusion between early endosomes requires phosphatidylinositol-3-OH kinase (PI(3)K) activity as well as the small GTPase Rab5. Excess Rab5-GTP complex restores endosome fusion when PI(3)K is inhibited. Here we identify the early-endosomal autoantigen EEA1 which binds the PI(3)K product phosphatidylinositol-3-phosphate, as a new Rab5 effector that is required for endosome fusion. The association of EEA1 with the endosomal membrane requires Rab5-GTP and PI(3)K activity, and excess Rab5-GTP stabilizes the membrane association of EEA1 even when PI(3)K is inhibited. The identification of EEA1 as a direct Rab5 effector provides a molecular link between PI(3)K and Rab5, and its restricted distribution to early endosomes indicates that EEA1 may confer directionality to Rab5-dependent endocytic transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Secretory lysosomes.

            Regulated secretion of stored secretory products is important in many cell types. In contrast to professional secretory cells, which store their secretory products in specialized secretory granules, some secretory cells store their secretory proteins in a dual-function organelle, called a secretory lysosome. Functionally, secretory lysosomes are unusual in that they serve both as a degradative and as a secretory compartment. Recent work shows that cells with secretory lysosomes use new sorting and secretory pathways. The importance of these organelles is highlighted by several genetic diseases, in which immune function and pigmentation--two processes that normally involve secretory lysosomes--are impaired.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization.

              To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm-oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm-zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                18 September 2019
                2019
                : 7
                : 195
                Affiliations
                [1] 1State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing, China
                [2] 2University of Chinese Academy of Sciences , Beijing, China
                Author notes

                Edited by: Tomer Avidor-Reiss, University of Toledo, United States

                Reviewed by: Rajprasad Loganathan, Johns Hopkins University, United States; Giuliano Callaini, University of Siena, Italy

                *Correspondence: Wei Li leways@ 123456ioz.ac.cn

                This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2019.00195
                6759486
                31620437
                49d5811a-9567-441c-82da-79f86abc87da
                Copyright © 2019 Khawar, Gao and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 May 2019
                : 29 August 2019
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 137, Pages: 12, Words: 9424
                Categories
                Cell and Developmental Biology
                Review

                acrosome biogenesis,autolysosome,lysosomes,globozoospermia,spermiogenesis

                Comments

                Comment on this article