7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells.

      Molecular cancer therapeutics
      Antineoplastic Agents, pharmacology, Apoptosis, drug effects, Azacitidine, Boronic Acids, Cell Division, Cell Line, Tumor, Cell Survival, DNA Damage, DNA, Neoplasm, Doxorubicin, Drug Synergism, Enzyme Inhibitors, Humans, Multiple Myeloma, pathology, Pyrazines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated the cytotoxicity of 5-azacytidine, a DNA methyltransferase inhibitor, against multiple myeloma (MM) cells, and characterized DNA damage-related mechanisms of cell death. 5-Azacytidine showed significant cytotoxicity against both conventional therapy-sensitive and therapy-resistant MM cell lines, as well as multidrug-resistant patient-derived MM cells, with IC(50) of approximately 0.8-3 micromol/L. Conversely, 5-azacytidine was not cytotoxic to peripheral blood mononuclear cells or patient-derived bone marrow stromal cells (BMSC) at these doses. Importantly, 5-azacytidine overcame the survival and growth advantages conferred by exogenous interleukin-6 (IL-6), insulin-like growth factor-I (IGF-I), or by adherence of MM cells to BMSCs. 5-Azacytidine treatment induced DNA double-strand break (DSB) responses, as evidenced by H2AX, Chk2, and p53 phosphorylations, and apoptosis of MM cells. 5-Azacytidine-induced apoptosis was both caspase dependent and independent, with caspase 8 and caspase 9 cleavage; Mcl-1 cleavage; Bax, Puma, and Noxa up-regulation; as well as release of AIF and EndoG from the mitochondria. Finally, we show that 5-azacytidine-induced DNA DSB responses were mediated predominantly by ATR, and that doxorubicin, as well as bortezomib, synergistically enhanced 5-azacytidine-induced MM cell death. Taken together, these data provide the preclinical rationale for the clinical evaluation of 5-azacytidine, alone and in combination with doxorubicin and bortezomib, to improve patient outcome in MM.

          Related collections

          Author and article information

          Comments

          Comment on this article