93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Addressing the numbers problem in directed evolution.

          Our previous contribution to increasing the efficiency of directed evolution is iterative saturation mutagenesis (ISM) as a systematic means of generating focused libraries for the control of substrate acceptance, enantioselectivity, or thermostability of enzymes. We have now introduced a crucial element to knowledge-guided targeted mutagenesis in general that helps to solve the numbers problem in directed evolution. We show that the choice of the amino acid (aa) alphabet, as specified by the utilized codon degeneracy, provides the experimenter with a powerful tool in designing "smarter" randomized libraries that require considerably less screening effort. A systematic comparison of two different codon degeneracies was made by examining the relative quality of the identically sized enzyme libraries in relation to the degree of oversampling required in the screening process. The specific example in our case study concerns the conventional NNK codon degeneracy (32 codons/20 aa) versus NDT (12 codons/12 aa). The model reaction is the hydrolytic kinetic resolution of a chiral trans-disubstituted epoxide, catalyzed by the epoxide hydrolase from Aspergillus niger. The NDT library proves to be of much higher quality, as measured by the dramatically higher frequency of positive variants and by the magnitude of catalyst improvement (enhanced rate and enantioselectivity). We provide a statistical analysis that constitutes a useful guide for the optimal design and generation of "smarter" focused libraries. This type of approach accelerates the process of laboratory evolution considerably and can be expected to be broadly applicable when engineering functional proteins in general.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Properties and applications of starch-converting enzymes of the alpha-amylase family.

            Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins.

              The bitter taste of drugs, food components, and any other substances which get in the mouth as dissolved in an aqueous solution, or in the saliva, can be strongly reduced or fully eliminated, if the bitter component forms an inclusion complex with an appropriate cyclodextrin (CD). The value of the complex association constant (determined by the structure of the bitter 'guest' molecule and the size and eventual substitution of the 'host' CD molecule), the temperature and the host/guest ratio determine the extent of complexation of the guest molecule (percentage of complexation) at the equilibrium. The K(ass) for most drug/CD complexes at 36 degrees C buccal cavity temperature is between 10(2) and 10(4) mol-1. If the unit dose (of a sublingual or chewing tablet, chewing gum) with a bitter drug (molecular weight of about 150, forming a 1:1 complex with betaCD) is approximately 10mg then the betaCD can be taken in a 5- or even 10-fold molar excess. Under such conditions more than 99% of the bitter drug is complexed, and because complexed molecules cannot react with the taste buds in the buccal cavity no bitter taste is perceived. Frequently, preparation of the drug/CD complex is not necessary, because the betaCD is present in a large excess, dissolved very quickly in the saliva and results in a saturated CD solution. Therefore, the complexation of the bitter drug is completed very rapidly. Only dissolved substances have taste and only CD complexable drug molecules can become debittered by CDs. Bitter, astringent components of foods (e.g. soya), beverages (e.g. naringin in citrus fruit juice, or chlorogenic acid and polyphenols in coffee) cigarette smoke (nicotine) also can be complexed and their taste reduced or fully eliminated.
                Bookmark

                Author and article information

                Contributors
                +31-50-3632150 , +31-50-3632154 , L.Dijkhuizen@rug.nl
                Journal
                Appl Microbiol Biotechnol
                Applied Microbiology and Biotechnology
                Springer-Verlag (Berlin/Heidelberg )
                0175-7598
                1432-0614
                18 September 2009
                18 September 2009
                January 2010
                : 85
                : 4
                : 823-835
                Affiliations
                [1 ]Microbial Physiology, Groningen Biomolecular Sciences, and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
                [2 ]Dublin-Oxford Glycobiology Laboratory, NIBRT, Conway Institute, University College Dublin, Dublin, Ireland
                Article
                2221
                10.1007/s00253-009-2221-3
                2804789
                19763564
                49e33690-6bab-4cee-915d-f5fc7328be25
                © The Author(s) 2009
                History
                : 27 June 2009
                : 25 August 2009
                : 25 August 2009
                Categories
                Mini-Review
                Custom metadata
                © Springer-Verlag 2010

                Biotechnology
                protein engineering,glycoside hydrolase,directed evolution,starch,amylase,biocatalysis
                Biotechnology
                protein engineering, glycoside hydrolase, directed evolution, starch, amylase, biocatalysis

                Comments

                Comment on this article