7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Endogenous Muscle Atrophy F-Box Mediates Pressure Overload–Induced Cardiac Hypertrophy Through Regulation of Nuclear Factor-κB

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overexpression of muscle atrophy F-box (MAFbx/atrogin-1), an E3 ubiquitin ligase, induces proteasomal degradation in cardiomyocytes. The role of endogenous MAFbx in regulating cardiac hypertrophy and failure remains unclear. We investigated the role of MAFbx in regulating cardiac hypertrophy and function in response to pressure overload. Transverse aortic constriction (TAC) was applied to MAFbx knockout (KO) and wild-type (WT) mice. Expression of MAFbx in WT mice was significantly increased by TAC. TAC-induced increases in cardiac hypertrophy were significantly smaller in MAFbx KO than in WT mice. There was significantly less lung congestion and interstitial fibrosis in MAFbx KO than in WT mice. MAFbx KO also inhibited β-adrenergic cardiac hypertrophy. DNA microarray analysis revealed that activation of genes associated with the transcription factor binding site for the nuclear factor-κB family were inhibited in MAFbx KO mice compared with WT mice after TAC. Although the levels of IκB-α were significantly decreased after TAC in WT mice, they were increased in MAFbx KO mice. MAFbx regulates ubiquitination and proteasomal degradation of IκB-α in cardiomyocytes. In primary cultured rat cardiomyocytes, phenylephrine-induced activation of nuclear factor-κB and hypertrophy were significantly suppressed by MAFbx knockdown but were partially rescued by overexpression of nuclear factor-κB p65. MAFbx plays an essential role in mediating cardiac hypertrophy in response to pressure overload. Downregulation of MAFbx inhibits cardiac hypertrophy in part through stabilization of IκB-α and inactivation of nuclear factor-κB. Taken together, inhibition of MAFbx attenuates pathological hypertrophy, thereby protecting the heart from progression into heart failure.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities.

          Post-translational modification with ubiquitin is one of the most important mechanisms in the regulation of protein stability and function. However, the high reversibility of this modification is the main obstacle for the isolation and characterization of ubiquitylated proteins. To overcome this problem, we have developed tandem-repeated ubiquitin-binding entities (TUBEs) based on ubiquitin-associated (UBA) domains. TUBEs recognize tetra-ubiquitin with a markedly higher affinity than single UBA domains, allowing poly-ubiquitylated proteins to be efficiently purified from cell extracts in native conditions. More significant is the fact that TUBEs protect poly-ubiquitin-conjugated proteins, such as p53 and IkappaBalpha, both from proteasomal degradation and de-ubiquitylating activity present in cell extracts, as well as from existing proteasome and cysteine protease inhibitors. Therefore, these new 'molecular traps' should become valuable tools for purifying endogenous poly-ubiquitylated proteins, thus contributing to a better characterization of many essential functions regulated by these post-translational modifications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation.

            Although preclinical data suggested that tumor necrosis factor-alpha (TNF) neutralization in heart failure (HF) would be beneficial, clinical trials of TNF antagonists were paradoxically negative. We hypothesized that TNF induces opposing inflammatory and remodeling responses in HF that are TNF-receptor (TNFR) specific. HF was induced in wild-type (WT), TNFR1(-/-), and TNFR2(-/-) mice via coronary ligation. Compared with WT HF, 4-week postinfarction survival was significantly improved in both TNFR1(-/-) and TNFR2(-/-) HF. Compared with sham, WT HF hearts exhibited significant remodeling with robust activation of nuclear factor (NF)-kappaB, p38 mitogen-activated protein kinase, and JNK2 and upregulation of TNF, interleukin (IL)-1beta, IL-6, and IL-10. Compared with WT HF, TNFR1(-/-) HF exhibited (1) improved remodeling, hypertrophy, and contractile function; (2) less apoptosis; and (3) diminished NF-kappaB, p38 mitogen-activated protein kinase, and JNK2 activation and cytokine expression. In contrast, TNFR2(-/-) HF showed exaggerated remodeling and hypertrophy, increased border zone fibrosis, augmented NF-kappaB and p38 mitogen-activated protein kinase activation, higher IL-1beta and IL-6 gene expression, greater activated macrophages, and greater apoptosis. Oxidative stress and diastolic function were improved in both TNFR1(-/-)and TNFR2(-/-) HF. In H9c2 cardiomyocytes, sustained NF-kappaB activation was proapoptotic, an effect dependent on TNFR1 signaling, whereas TNFR2 overexpression attenuated TNF-induced NF-kappaB activation. TNFR1 and TNFR2 have disparate and opposing effects on remodeling, hypertrophy, NF-kappaB, inflammation, and apoptosis in HF: TNFR1 exacerbates, whereas TNFR2 ameliorates, these events. However, signaling through both receptors is required to induce diastolic dysfunction and oxidative stress. TNFR-specific effects in HF should be considered when therapeutic anti-TNF strategies are developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling.

              Although signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulation. FOXO3a gene transfer prevented both IGF and stretch-induced hypertrophy in rat neonatal cardiac myocyte cultures in vitro. Transduction with FOXO3a also caused a significant reduction in cardiomyocyte size in mouse hearts in vivo. Akt/FOXO signaling regulated the expression of multiple atrophy-related genes "atrogenes," including the ubiquitin ligase atrogin-1 (MAFbx). In cardiac myocyte cultures, transduction with constitutively active Akt or treatment with IGF suppressed atrogin-1 mRNA expression, whereas transduction with FOXO3a stimulated its expression. FOXO3a transduction activated the atrogin-1 promoter in both cultured myocytes and mouse heart. Thus, in cardiomyocytes, as in skeletal muscle, FOXO3a activates an atrogene transcriptional program, which retards or prevents hypertrophy and is down-regulated by multiple physiological and pathological stimuli of myocyte growth.
                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                July 08 2011
                July 08 2011
                : 109
                : 2
                : 161-171
                Affiliations
                [1 ]From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, Newark, NJ (S.U., Y.M., C.H., J.C., D.Z., J.S.); the Department of Biochemistry and Molecular Biology, UMDNJ, New Jersey Medical School, Newark, NJ (J.Y.Y., B.T.); Novartis Institutes for Biomedical Research, Cambridge, MA (D.J.G.); and the Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan (S.U.).
                Article
                10.1161/CIRCRESAHA.110.238717
                3257317
                21617130
                4a0b3848-c4c6-4d65-82d2-2b35a4fe1f69
                © 2011
                History

                Comments

                Comment on this article