Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Bioactive glass ceramics: properties and applications.

Biomaterials

Surface Properties, Prostheses and Implants, Materials Testing, Glass, Ceramics, Bone Cements, Biocompatible Materials, Apatites, Animals

Read this article at

ScienceOpenPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Heat treatment of an MgO-CaO-SiO2-P2O5 glass gave a glass ceramic containing crystalline apatite (Ca10(PO4)6O,F2] and beta-wollastonite (CaO,SiO2) in an MgO-CaO-SiO2 glassy matrix. It showed bioactivity and a fairly high mechanical strength which decreased only slowly, even under load-bearing conditions in the body. It is used clinically as artificial vertebrae, iliac bones, etc. The bioactivity of this glass ceramic was attributed to apatite formation on its surface in the body. Dissolution of calcium and silicate ions from the glass ceramic was considered to play an important role in forming the surface apatite layer. It was shown that some new kinds of bioactive materials can be developed from CaO,SiO2-based glasses. Ceramics, metals and organic polymers coated with bone-like apatite were obtained when such materials were placed in the vicinity of a CaO,SiO2-based glass in a simulated body fluid. A bioactive bone cement which was hardened within 4 min and bonded to living bone, forming an apatite, was obtained by mixing a CaO,SiO2-based glass powder with a neutral ammonium phosphate solution. Its compressive strength reached 80 MPa comparable to that of poly(methyl methacrylate) within 3 d. A bioactive and ferromagnetic glass ceramic containing crystalline magnetite (Fe3O4) in a matrix of CaO,SiO2-based glassy and crystalline phases was obtained by a heat treatment of a Fe2O3-CaO.SiO2-B2O3-P2O5 glass. This glass ceramic was shown to be useful as thermoseeds for hyperthermia treatment of cancer.

      Related collections

      Author and article information

      Journal
      1878450

      Comments

      Comment on this article