16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-Cell Analysis Reveals Distinct Gene Expression and Heterogeneity in Male and Female Plasmodium falciparum Gametocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most human deaths that result from malaria are caused by the eukaryotic parasite Plasmodium falciparum. The only form of this parasite that is transmitted to the mosquito is the sexual form, called the gametocyte. The production of mature gametocytes can take up to 2 weeks and results in phenotypically distinct males and females, although what causes this gender-specific differentiation remains largely unknown. Here, we demonstrate the first use of microfluidic technology to capture single gametocytes and determine their temporal sex-specific gene expression in an unbiased manner. We were able to determine male or female identity of single cells based on the upregulation of gender-specific genes as early as mid-stage gametocytes. This analysis has revealed strong markers for male and female gametocyte differentiation that were previously concealed in population analyses. Similar single-cell analyses in eukaryotic pathogens using this method may uncover rare cell types and heterogeneity previously masked in population studies.

          ABSTRACT

          Sexual reproduction is an obligate step in the Plasmodium falciparum life cycle, with mature gametocytes being the only form of the parasite capable of human-to-mosquito transmission. Development of male and female gametocytes takes 9 to 12 days, and although more than 300 genes are thought to be specific to gametocytes, only a few have been postulated to be male or female specific. Because these genes are often expressed during late gametocyte stages and for some, male- or female-specific transcript expression is debated, the separation of male and female populations is technically challenging. To overcome these challenges, we have developed an unbiased single-cell approach to determine which transcripts are expressed in male versus female gametocytes. Using microfluidic technology, we isolated single mid- to late-stage gametocytes to compare the expression of 91 genes, including 87 gametocyte-specific genes, in 90 cells. Such analysis identified distinct gene clusters whose expression was associated with male, female, or all gametocytes. In addition, a small number of male gametocytes clustered separately from female gametocytes based on sex-specific expression independent of stage. Many female-enriched genes also exhibited stage-specific expression. RNA fluorescent in situ hybridization of male and female markers validated the mutually exclusive expression pattern of male and female transcripts in gametocytes. These analyses uncovered novel male and female markers that are expressed as early as stage III gametocytogenesis, providing further insight into Plasmodium sex-specific differentiation previously masked in population analyses. Our single-cell approach reveals the most robust markers for sex-specific differentiation in Plasmodium gametocytes. Such single-cell expression assays can be generalized to all eukaryotic pathogens.

          IMPORTANCE Most human deaths that result from malaria are caused by the eukaryotic parasite Plasmodium falciparum. The only form of this parasite that is transmitted to the mosquito is the sexual form, called the gametocyte. The production of mature gametocytes can take up to 2 weeks and results in phenotypically distinct males and females, although what causes this gender-specific differentiation remains largely unknown. Here, we demonstrate the first use of microfluidic technology to capture single gametocytes and determine their temporal sex-specific gene expression in an unbiased manner. We were able to determine male or female identity of single cells based on the upregulation of gender-specific genes as early as mid-stage gametocytes. This analysis has revealed strong markers for male and female gametocyte differentiation that were previously concealed in population analyses. Similar single-cell analyses in eukaryotic pathogens using this method may uncover rare cell types and heterogeneity previously masked in population studies.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of sexual development of Plasmodium by translational repression.

          G Mair (2006)
          Translational repression of messenger RNAs (mRNAs) plays an important role in sexual differentiation and gametogenesis in multicellular eukaryotes. Translational repression and mRNA turnover were shown to influence stage-specific gene expression in the protozoan Plasmodium. The DDX6-class RNA helicase, DOZI (development of zygote inhibited), is found in a complex with mRNA species in cytoplasmic bodies of female, blood-stage gametocytes. These translationally repressed complexes are normally stored for translation after fertilization. Genetic disruption of pbdozi inhibits the formation of the ribonucleoprotein complexes, and instead, at least 370 transcripts are diverted to a degradation pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection.

            Submicroscopic Plasmodium falciparum gametocytemia (<5,000 gametocytes/mL) is common and may result in mosquito infection. We assessed the relation between gametocyte density and mosquito infection under experimental and field conditions using real-time quantitative nucleic acid sequence-based amplification (QT-NASBA) for gametocyte quantification. Serial dilutions of NF54 P. falciparum gametocytes showed a positive association between gametocyte density and the proportion of infected mosquitoes (beta=6.1; 95% confidence interval [CI], 2.7-9.6; P=0.001). Successful infection became unlikely below an estimated density of 250-300 gametocytes/mL. In the field, blood samples of 100 naturally infected children showed a positive association between gametocyte density and oocyst counts in mosquitoes (beta=0.38; 95% CI, 0.14-0.61; P=0.002). The relative contribution to malaria transmission was similar for carriers with submicroscopic and microscopic gametocytemia. Our results show that transmission occurs efficiently at submicroscopic gametocyte densities and that carriers harboring submicroscopic gametocytemia constitute a considerable proportion of the human infectious reservoir.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry.

              The annotated genomes of organisms define a 'blueprint' of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell-cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msph
                msph
                mSphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                11 April 2018
                Mar-Apr 2018
                : 3
                : 2
                : e00130-18
                Affiliations
                [a ]Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
                [b ]Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
                [c ]Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
                The Hebrew University
                Author notes
                Address correspondence to Jen-Tsan Ashley Chi, jentsan.chi@ 123456duke.edu .

                Citation Walzer KA, Kubicki DM, Tang X, Chi J-TA. 2018. Single-cell analysis reveals distinct gene expression and heterogeneity in male and female Plasmodium falciparum gametocytes. mSphere 3:e00130-18. https://doi.org/10.1128/mSphere.00130-18.

                Article
                mSphere00130-18
                10.1128/mSphere.00130-18
                5909122
                29643077
                4a1002cc-95dc-4cf1-ade3-28a991b4e3cc
                Copyright © 2018 Walzer et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 9 March 2018
                : 22 March 2018
                Page count
                supplementary-material: 5, Figures: 7, Tables: 1, Equations: 0, References: 69, Pages: 18, Words: 10269
                Funding
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award Recipient :
                Funded by: Burroughs Wellcome Fund (BWF), https://doi.org/10.13039/100000861;
                Award Recipient :
                Categories
                Research Article
                Molecular Biology and Physiology
                Custom metadata
                March/April 2018

                single cell,rna-fish,plasmodium falciparum,sexual development,gene expression

                Comments

                Comment on this article