19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tocotrienol-Rich Fraction Prevents Cell Cycle Arrest and Elongates Telomere Length in Senescent Human Diploid Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs). Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G 0/G 1 phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA- β-gal, damaged DNA, and cells in G 0/G 1 phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidant signals and oxidative stress.

          Although oxidants clearly possess the capacity to behave in a random and destructive fashion, growing evidence suggests that in many instances the production of reactive oxygen species is tightly regulated and their downstream targets exquisitely specific. This past year, several notable advances have been made in defining the specific redox-dependent targets of intracellular oxidants, as well as the myriad pathways that appear to employ oxidants as effector molecules. These new studies have significantly altered our understanding of how reactive oxygen species participate in diverse processes from tumourigenesis to ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes.

            Replicative senescence of human diploid fibroblasts (HDFs) or melanocytes is caused by the exhaustion of their proliferative potential. Stress-induced premature senescence (SIPS) occurs after many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Cells in replicative senescence share common features with cells in SIPS: morphology, senescence-associated beta-galactosidase activity, cell cycle regulation, gene expression and telomere shortening. Telomere shortening is attributed to the accumulation of DNA single-strand breaks induced by oxidative damage. SIPS could be a mechanism of accumulation of senescent-like cells in vivo. Melanocytes exposed to sublethal doses of UVB undergo SIPS. Melanocytes from dark- and light- skinned populations display differences in their cell cycle regulation. Delayed SIPS occurs in melanocytes from light-skinned populations since a reduced association of p16(Ink-4a) with CDK4 and reduced phosphorylation of the retinoblastoma protein are observed. The role of reactive oxygen species in melanocyte SIPS is unclear. Both replicative senescence and SIPS are dependent on two major pathways. One is triggered by DNA damage, telomere damage and/or shortening and involves the activation of the p53 and p21(waf-1) proteins. The second pathway results in the accumulation of p16(Ink-4a) with the MAP kinase signalling pathway as possible intermediate. These data corroborate the thermodynamical theory of ageing, according to which the exposure of cells to sublethal stresses of various natures can trigger SIPS, with possible modulations of this process by bioenergetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts.

              Telomere shortening triggers replicative senescence in human fibroblasts. The inability of DNA polymerases to replicate a linear DNA molecule completely (the end replication problem) is one cause of telomere shortening. Other possible causes are the formation of single-stranded overhangs at the end of telomeres and the preferential vulnerability of telomeres to oxidative stress. To elucidate the relative importance of these possibilities, amount and distribution of telomeric single-strand breaks, length of the G-rich overhang, and telomere shortening rate in human MRC-5 fibroblasts were measured. Treatment of nonproliferating cells with hydrogen peroxide increases the sensitivity to S1 nuclease in telomeres preferentially and accelerates their shortening by a corresponding amount as soon as the cells proliferate. A reduction of the activity of intracellular peroxides using the spin trap alpha-phenyl-t-butyl-nitrone reduces the telomere shortening rate and increases the replicative life span. The length of the telomeric single-stranded overhang is independent of DNA damaging stresses, but single-strand breaks accumulate randomly all along the telomere after alkylation. The telomere shortening rate and the rate of replicative aging can be either accelerated or decelerated by a modification of the amount of oxidative stress. Quantitatively, stress-mediated telomere damage contributes most to telomere shortening under standard conditions.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2011
                30 March 2011
                : 2011
                : 506171
                Affiliations
                1Department of Biochemistry, Faculty of Medicine, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
                2Department of Physiology, Faculty of Medicine, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
                Author notes

                Academic Editor: Sarah H. Elsea

                Article
                10.1155/2011/506171
                3085479
                21541185
                4a16d3fe-29df-4e8f-9146-f26473e4004b
                Copyright © 2011 Suzana Makpol et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 October 2010
                : 31 January 2011
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article