11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ethanol Modulates Glutamatergic Transmission and NMDAR-Mediated Synaptic Plasticity in the Agranular Insular Cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The agranular insular cortex (AIC) has recently been investigated by the alcohol field because of its connectivity to and modulatory control over limbic and brainstem regions implicated in alcohol use disorder (AUD), and because it has shown involvement in animal models of alcohol drinking. Despite evidence of AIC involvement in AUD, there has not yet been an examination of whether ethanol modulates glutamatergic and γ-amino-butyric acid (GABA)ergic synaptic transmission and plasticity in the AIC. Characterizing how the synaptic transmission and plasticity states of AIC cortical processing neurons are modulated by acute ethanol will likely reveal the molecular targets by which chronic ethanol alters AIC function as alcohol drinking transitions from controlled to problematic. Therefore, we collected brain slices from ethanol-naïve adult male mice, obtained whole-cell recording configuration in layer 2/3 AIC pyramidal neurons, and bath-applied ethanol at pharmacologically relevant concentrations during electrophysiological assays of glutamatergic and GABAergic synaptic transmission and plasticity. We found that ethanol inhibited electrically evoked N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory post-synaptic currents (EPSCs) in a concentration-related fashion, and had little effect on evoked α-amino-3-hydrox-5-methylisoxazole-4-propionic acid-type receptor (AMPAR)-mediated EPSCs. Ethanol had no effect on spontaneous excitatory post-synaptic currents (sEPSCs) or inhibitory GABA AR-mediated post-synaptic currents (sIPSCs). We found that synaptic conditioning (low-frequency stimulation for 15 min at 1 Hz) induced a form of long-term depression (LTD) of evoked AMPAR-mediated EPSCs. The ability to induce LTD was inhibited by a non-selective NMDAR antagonist (DL-2-amino-5-phosphonovaleric acid), and also by acute, intoxicating concentrations of ethanol. Taken together these data suggest that the glutamate, but not GABA system in the AIC is uniquely sensitive to ethanol, and that in particular NMDAR-mediated processes in the AIC may be disrupted by pharmacologically relevant concentrations of ethanol.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term depression in the CNS.

          Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have focused on forms of LTD that are triggered by synaptic activation of either NMDARs (N-methyl-D-aspartate receptors) or metabotropic glutamate receptors (mGluRs). Converging evidence supports a crucial role of LTD in some types of learning and memory and in situations in which cognitive demands require a flexible response. In addition, LTD may underlie the cognitive effects of acute stress, the addictive potential of some drugs of abuse and the elimination of synapses in neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling.

            Addictive drugs have in common that they target the mesocorticolimbic dopamine (DA) system. This system originates in the ventral tegmental area (VTA) and projects mainly to the nucleus accumbens (NAc) and prefrontal cortex (PFC). Here, we review the effects that such drugs leave on glutamatergic and GABAergic synaptic transmission in these three brain areas. We refer to these changes as drug-evoked synaptic plasticity, which outlasts the presence of the drug in the brain and contributes to the reorganization of neural circuits. While in most cases these early changes are not sufficient to induce the disease, with repetitive drug exposure, they may add up and contribute to addictive behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

              The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                18 December 2018
                2018
                : 9
                : 1458
                Affiliations
                Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin , Austin, TX, United States
                Author notes

                Edited by: Brian McCool, Wake Forest School of Medicine, United States

                Reviewed by: David M. Lovinger, National Institute on Alcohol Abuse and Alcoholism (NIAAA), United States; Enrico Sanna, Università degli studi di Cagliari, Italy; Carlos Fernando Valenzuela, University of New Mexico, United States

                *Correspondence: Joel E. Shillinglaw joeleshillinglaw@ 123456gmail.com

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

                †deceased

                ‡Share senior authorship

                Article
                10.3389/fphar.2018.01458
                6305468
                30618752
                4a2c72e6-b1b9-469c-b189-1f2756949408
                Copyright © 2018 Shillinglaw, Morrisett and Mangieri.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 September 2018
                : 29 November 2018
                Page count
                Figures: 8, Tables: 7, Equations: 0, References: 49, Pages: 14, Words: 9567
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                electrophysiology,ethanol,glutamate,synaptic plasticity,insular cortex,mouse

                Comments

                Comment on this article