25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined application of Embelin and tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and invasion in osteosarcoma cells via caspase-induced apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Embelin, as an inhibitor of the X-linked inhibitor of apoptosis protein (XIAP), may induce apoptosis in various types of cancer cells. The present study aimed to determine the effect of Embelin on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of osteosarcoma cells. Embelin and TRAIL were applied to U2OS and MG63 cells, respectively or in combination. MTT was initially used to detect the difference in survival rates between the group receiving combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin and the individual application groups. Light microscopic quantification was used to detect the morphology of the osteosarcoma cells in each group. Determination of cell apoptosis was subsequently performed using flow cytometry. The invasive ability of the cells was detected by a Transwell assay, prior to relative protein expression being determined by western blot analysis. Based on all the test data, it was revealed that the survival rates and the invasive ability were significantly lower following the combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin than following the individual application of either (P<0.01). Additionally, upregulating expression of caspases, as well as death receptor 5, and downregulating expression of XIAP and matrix metalloproteinase 9 (MMP-9), had more significant effects in the combined group compared with the individual group and the control group. All these results suggested that Embelin may enhance TRAIL-induced apoptosis and inhibit the invasion of human osteosarcoma cells.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB.

          TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.

            Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), calling for novel strategies that counter apoptosis resistance. Here, we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations, but not a structurally related control compound, synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells, whereas they do not affect viability of normal peripheral blood lymphocytes, suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases, loss of mitochondrial membrane potential, and cytochrome c release in a caspase-dependent manner, indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note, XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly, XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo, they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus, XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications.

              Multiple myeloma (MM) remains incurable and novel treatments are urgently needed. Preclinical in vitro and in vivo evaluations were performed to assess the potential therapeutic applications of human recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) in MM. TRAIL/Apo2L potently induced apoptosis of MM cells from patients and the majority of MM cell lines, including cells sensitive or resistant to dexamethasone (Dex), doxorubicin (Dox), melphalan, and mitoxantrone. TRAIL/Apo2L also overcame the survival effect of interleukin 6 on MM cells and did not affect the survival of peripheral blood and bone marrow mononuclear cells and purified B cells from healthy donors. The status of the TRAIL receptors (assessed by immunoblotting and flow cytometry) could not predict TRAIL sensitivity of MM cells. The anti-MM activity of TRAIL/Apo2L was confirmed in nu/xid/bg mice xenografted with human MM cells; TRAIL (500 microg intraperitoneally daily for 14 days) was well tolerated and significantly suppressed the growth of plasmacytomas. Dox up-regulated the expression of the TRAIL receptor death receptor 5 (DR5) and synergistically enhanced the effect of TRAIL not only against MM cells sensitive to, but also against those resistant to, Dex- or Dox-induced apoptosis. Nuclear factor (NF)-kappaB inhibitors, such as SN50 (a cell-permeable inhibitor of the nuclear translocation and transcriptional activity of NF-kappaB) or the proteasome inhibitor PS-341, enhanced the proapoptotic activity of TRAIL/Apo2L against TRAIL-sensitive MM cells, whereas SN50 reversed the TRAIL resistance of ARH-77 and IM-9 MM cells. Importantly, normal B lymphocytes were not sensitized to TRAIL by either Dox, SN50, or PS-341. These preclinical studies suggest that TRAIL/Apo2L can overcome conventional drug resistance and provide the basis for clinical trials of TRAIL-based treatment regimens to improve outcome in patients with MM. (Blood. 2001;98:795-804)
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                May 2018
                08 March 2018
                08 March 2018
                : 15
                : 5
                : 6931-6940
                Affiliations
                [1 ]Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
                [2 ]Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
                Author notes
                Correspondence to: Dr Tao Huang, Department of Orthopedics, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, P.R. China, E-mail: huangtao@ 123456mail.cmu.edu.cn
                [*]

                Contributed equally

                Article
                OL-0-0-8209
                10.3892/ol.2018.8209
                5921233
                29731867
                4a34f116-8df5-45c9-8ad4-1dd3b20a8f9b
                Copyright: © Qian et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 05 March 2017
                : 26 January 2018
                Categories
                Articles

                Oncology & Radiotherapy
                osteosarcoma,embelin,trail,apoptosis,invasion
                Oncology & Radiotherapy
                osteosarcoma, embelin, trail, apoptosis, invasion

                Comments

                Comment on this article