6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Origins of variation in conducted vasomotor responses

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice.

          To study endothelial cell (EC)- specific Ca(2+) signaling in vivo we engineered transgenic mice in which the Ca(2+) sensor GCaMP2 is placed under control of endogenous connexin40 (Cx40) transcription regulatory elements within a bacterial artificial chromosome (BAC), resulting in high sensor expression in arterial ECs, atrial myocytes, and cardiac Purkinje fibers. High signal/noise Ca(2+) signals were obtained in Cx40(BAC)-GCaMP2 mice within the ventricular Purkinje cell network in vitro and in ECs of cremaster muscle arterioles in vivo. Microiontophoresis of acetylcholine (ACh) onto arterioles triggered a transient increase in EC Ca(2+) fluorescence that propagated along the arteriole with an initial velocity of approximately 116 microm/s (n=28) and decayed over distances up to 974 microm. The local rise in EC Ca(2+) was followed (delay, 830+/-60 ms; n=8) by vasodilation that conducted rapidly (mm/s), bidirectionally, and into branches for distances exceeding 1 mm. At intermediate distances (300 to 600 microm), rapidly-conducted vasodilation occurred without changing EC Ca(2+), and additional dilation occurred after arrival of a Ca(2+) wave. In contrast, focal delivery of sodium nitroprusside evoked similar local dilations without Ca(2+) signaling or conduction. We conclude that in vivo responses to ACh in arterioles consists of 2 phases: (1) a rapidly-conducted vasodilation initiated by a local rise in EC Ca(2+) but independent of EC Ca(2+) signaling at remote sites; and (2) a slower complementary dilation associated with a Ca(2+) wave that propagates along the endothelium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries.

            Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of K(Ca)3.1 (IK(Ca)) channels and K(Ca)2.3 (SK(Ca)) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate K(Ca)3.1 and K(Ca)2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. K(Ca)3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca(2+)](o) but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca(2+)](i) increases stimulated by phenylephrine depolarization. Imaging [Ca(2+)](i) within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca(2+)](i) during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca(2+)](i) evoked by phenylephrine. If gap junctions were uncoupled, K(Ca)3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na(+)/K(+)-ATPase. There was no evidence for an equivalent link through K(Ca)2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed K(Ca)2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas K(Ca)3.1 channels and Na(+)/K(+)-ATPase alpha(2)/alpha(3) subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca(2+)](o) appears to modify K(Ca)3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca(2+)](i). The resulting hyperpolarization links to arterial relaxation largely through Na(+)/K(+)-ATPase, possibly reflecting K(+) acting as an EDHF. In contrast, K(Ca)2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K(+) and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regulation of arterial tone by activation of calcium-dependent potassium channels

                Bookmark

                Author and article information

                Journal
                Pflügers Archiv - European Journal of Physiology
                Pflugers Arch - Eur J Physiol
                Springer Nature
                0031-6768
                1432-2013
                October 2015
                November 26 2014
                October 2015
                : 467
                : 10
                : 2055-2067
                Article
                10.1007/s00424-014-1649-1
                4a44e847-1d08-4589-ad01-a749f7263e84
                © 2015
                History

                Comments

                Comment on this article