4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Survey and Comparative Analysis of LTR Retrotransposons and Their Captured Genes in Rice and Sorghum

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Sorghum bicolor genome and the diversification of grasses.

            Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mobile elements: drivers of genome evolution.

              Mobile elements within genomes have driven genome evolution in diverse ways. Particularly in plants and mammals, retrotransposons have accumulated to constitute a large fraction of the genome and have shaped both genes and the entire genome. Although the host can often control their numbers, massive expansions of retrotransposons have been tolerated during evolution. Now mobile elements are becoming useful tools for learning more about genome evolution and gene function.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                29 July 2013
                : 8
                : 7
                : e71118
                Affiliations
                [1]Temasek Life Sciences Laboratory, National University of Singapore, Singapore
                Ben-Gurion University, Israel
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SYJ SR. Performed the experiments: SYJ. Analyzed the data: SYJ. Contributed reagents/materials/analysis tools: SYJ. Wrote the paper: SYJ SR.

                Article
                PONE-D-13-15021
                10.1371/journal.pone.0071118
                3726574
                23923055
                4a4eba82-4f6e-485a-95fb-5774f6191a05
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 April 2013
                : 26 June 2013
                Page count
                Pages: 11
                Funding
                This research was supported by Temasek Life Sciences Laboratory (Singapore) and by the Singapore National Research Foundation under the Competitive Research Programme Funding Scheme (CRP Award No. NRF-CRP7-2010-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Crops
                Cereals
                Maize
                Rice
                Biology
                Evolutionary Biology
                Genomic Evolution
                Organismal Evolution
                Origin of Life
                Population Genetics
                Genetics
                Plant Genetics
                Genomics
                Functional Genomics
                Molecular Cell Biology
                Transposons
                Retrotransposons
                Plant Science
                Plant Biotechnology
                Plant Genomics
                Plant Evolution
                Plant Genetics
                Plant Genomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article