8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Test–retest reliability of tip, key, and palmar pinch force sense in healthy adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          No previous studies have investigated the test–retest reliability of tip, key, and palmar pinch force sense in healthy adults. The present study explores the test-retest reliability of tip, key, and palmar pinch force sense for different force levels in healthy adults during an ipsilateral force reproduction task.

          Methods

          Fifty-six healthy subjects were instructed to produce varying levels of reference forces (10, 30, and 50% maximal voluntary isometric contraction (MVIC)) using three types of pinches (tip pinch, palmar pinch, and key pinch) and to reproduce these forces using the same hand. The subjects were tested twice by the same experienced testers, 1 week apart.

          Results

          Based on the high values of the intraclass correlation coefficient (ICC), the tip pinch (0.783–0.895) and palmar pinch (0.752–0.903) force sense tests demonstrated good reliability for all the variables. The ICCs for the key pinch (0.712–0.881) indicated fair to good relative test-retest reliability.

          Conclusion

          1) This study demonstrates that high test-retest reliability of tip, key, and palmar pinch force sense in healthy adults can be achieved using standardized positioning and the proposed approach. 2) According to the reliability measurements, 30 and 50% maximal voluntary isometric contraction (MVIC) are the most reliable pinch force sense levels.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM.

          Reliability, the consistency of a test or measurement, is frequently quantified in the movement sciences literature. A common metric is the intraclass correlation coefficient (ICC). In addition, the SEM, which can be calculated from the ICC, is also frequently reported in reliability studies. However, there are several versions of the ICC, and confusion exists in the movement sciences regarding which ICC to use. Further, the utility of the SEM is not fully appreciated. In this review, the basics of classic reliability theory are addressed in the context of choosing and interpreting an ICC. The primary distinction between ICC equations is argued to be one concerning the inclusion (equations 2,1 and 2,k) or exclusion (equations 3,1 and 3,k) of systematic error in the denominator of the ICC equation. Inferential tests of mean differences, which are performed in the process of deriving the necessary variance components for the calculation of ICC values, are useful to determine if systematic error is present. If so, the measurement schedule should be modified (removing trials where learning and/or fatigue effects are present) to remove systematic error, and ICC equations that only consider random error may be safely used. The use of ICC values is discussed in the context of estimating the effects of measurement error on sample size, statistical power, and correlation attenuation. Finally, calculation and application of the SEM are discussed. It is shown how the SEM and its variants can be used to construct confidence intervals for individual scores and to determine the minimal difference needed to be exhibited for one to be confident that a true change in performance of an individual has occurred.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Assessing proprioception: A critical review of methods

            To control movement, the brain has to integrate proprioceptive information from a variety of mechanoreceptors. The role of proprioception in daily activities, exercise, and sports has been extensively investigated, using different techniques, yet the proprioceptive mechanisms underlying human movement control are still unclear. In the current work we have reviewed understanding of proprioception and the three testing methods: threshold to detection of passive motion, joint position reproduction, and active movement extent discrimination, all of which have been used for assessing proprioception. The origin of the methods, the different testing apparatus, and the procedures and protocols used in each approach are compared and discussed. Recommendations are made for choosing an appropriate technique when assessing proprioceptive mechanisms in different contexts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proprioceptive acuity assessment via joint position matching: from basic science to general practice.

              Over the past several decades, studies of use-dependent plasticity have demonstrated a critical role for proprioceptive feedback in the reorganization, and subsequent recovery, of neuromotor systems. As such, an increasing emphasis has been placed on tests of proprioceptive acuity in both the clinic and the laboratory. One test that has garnered particular interest is joint position matching, whereby individuals must replicate a reference joint angle in the absence of vision (ie, using proprioceptive information). On the surface, this test might seem straightforward in nature. However, the present perspective article informs therapists and researchers alike of multiple insights gained from a recent series of position matching studies by the author and colleagues. In particular, 5 factors are outlined that can assist clinicians in developing well-informed opinions regarding the outcomes of tests of position matching abilities. This information should allow for enhanced diagnosis of proprioceptive deficits within clinical settings in the future.
                Bookmark

                Author and article information

                Contributors
                20160055@ruc.edu.cn
                lmm333_0@163.com
                17145575@qq.com
                xinyanzhang_ruc@163.com
                Journal
                BMC Musculoskelet Disord
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central (London )
                1471-2474
                26 March 2020
                26 March 2020
                2020
                : 21
                : 189
                Affiliations
                [1 ]GRID grid.24539.39, ISNI 0000 0004 0368 8103, Department of Physical Education, , Renmin University of China, ; Beijing, People’s Republic of China
                [2 ]GRID grid.440817.e, College of Physical Education, Langfang Teachers University, ; Langfang, Hebei 065000 People’s Republic of China
                [3 ]GRID grid.24539.39, ISNI 0000 0004 0368 8103, School of Sociology and Population Studies, Renmin University of China, ; Beijing, People’s Republic of China
                Author information
                http://orcid.org/0000-0002-3105-0989
                Article
                3187
                10.1186/s12891-020-3187-7
                7099785
                32216796
                4a58d759-47f1-45fc-aab6-557e428a011c
                © The Author(s). 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 May 2019
                : 3 March 2020
                Funding
                Funded by: the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China
                Award ID: 17XNF029
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Orthopedics
                proprioception,force sense,tip pinch,key pinch,palmar pinch,test–retest reliability
                Orthopedics
                proprioception, force sense, tip pinch, key pinch, palmar pinch, test–retest reliability

                Comments

                Comment on this article