23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Genome Analysis of the High Pathogenicity Salmonella Typhimurium Strain UK-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.

            Prokaryotes contain short DN repeats known as CRISPR, recognizable by the regular spacing existing between the recurring units. They represent the most widely distributed family of repeats among prokaryotic genomes suggesting a biological function. The origin of the intervening sequences, at present unknown, could provide clues about their biological activities. Here we show that CRISPR spacers derive from preexisting sequences, either chromosomal or within transmissible genetic elements such as bacteriophages and conjugative plasmids. Remarkably, these extrachromosomal elements fail to infect the specific spacer-carrier strain, implying a relationship between CRISPR and immunity against targeted DNA. Bacteriophages and conjugative plasmids are involved in prokaryotic population control, evolution, and pathogenicity. All these biological traits could be influenced by the presence of specific spacers. CRISPR loci can be visualized as mosaics of a repeated unit, separated by sequences at some time present elsewhere in the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

              Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                6 July 2012
                : 7
                : 7
                : e40645
                Affiliations
                [1 ]Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
                [2 ]Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
                [3 ]Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
                [4 ]Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, United States of America
                Universite de la Mediterranee, France
                Author notes

                Conceived and designed the experiments: YL RC. Performed the experiments: YL QK JY AM SW PBE. Analyzed the data: YL QK KR RVJ GG RC. Contributed reagents/materials/analysis tools: YL QK SW KR GG. Wrote the paper: YL KR GG RC.

                Article
                PONE-D-11-14204
                10.1371/journal.pone.0040645
                3391293
                22792393
                4a622107-4cc5-4ef3-85b0-ba36bdc3644d
                Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 July 2011
                : 13 June 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Comparative Genomics
                Genomics
                Comparative Genomics
                Microbiology
                Bacterial Pathogens
                Gram Negative
                Salmonella
                Microbial Pathogens
                Medicine
                Infectious Diseases
                Bacterial Diseases
                Salmonella

                Uncategorized
                Uncategorized

                Comments

                Comment on this article