9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films.

      IEEE transactions on ultrasonics, ferroelectrics, and frequency control

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thickness pure-shear mode film bulk acoustic wave resonators (FBARs) made of (1120) textured ZnO films have been fabricated. We also have fabricated FBAR structure consisting of two layers of the (1120) textured ZnO film with opposite polarization directions. This FBAR structure operated in second overtone pure-shear mode and allowed shear-mode FBARs at higher frequency. The effective electromechanical coupling coefficients k2 of pure-shear mode FBAR and second overtone pure-shear mode FBAR in this study were found to be 3.3% and 0.8%, respectively. The temperature coefficient of frequency (TCF) of thickness extensional mode FBAR, pure-shear mode FBAR, and second overtone pure-shear mode FBAR were measured in the temperature range of 10-60 degrees C. TCF values of -63.1 ppm/degrees C, -34.7 ppm/degrees C, and -35.6 ppm/degrees C were found for the thickness extensional mode FBAR, the pure-shear mode FBAR, and the second overtone pure-shear mode FBAR, respectively. These results demonstrated that pure-shear mode ZnO FBARs have more stable temperature characteristics than the conventional thickness extensional mode ZnO FBARs.

          Related collections

          Author and article information

          Journal
          17703672

          Comments

          Comment on this article