2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          A single-nucleotide polymorphism (SNP) is an alteration in one nucleotide in a certain position within a genome. SNPs are associated with disease susceptibility. However, the influences of SNPs on the pathogenesis of neonatal hypoxic-ischemic brain damage remain elusive. Seven-day-old rats were used to establish a hypoxic ischemic encephalopathy model. SNPs and expression profiles of mRNAs were analyzed in hypoxic ischemic encephalopathy model rats using RNA sequencing. Genes exhibiting SNPs associated with hypoxic ischemic encephalopathy were identified and studied by gene ontology and pathway analysis to identify their possible involvement in the disease mechanism. We identified 89 up-regulated genes containing SNPs that were mainly located on chromosome 1 and 2. Gene ontology analysis indicated that the up-regulated genes containing SNPs are mainly involved in angiogenesis, wound healing and glutamatergic synapse and biological processing of calcium-activated chloride channels. Signaling pathway analysis indicated that the differentially expressed genes play a role in glutamatergic synapses, long-term depression and oxytocin signaling. Moreover, intersection analysis of high throughput screening following PubMed retrieval and RNA sequencing for SNPs showed that CSRNP1, DUSP5 and LRRC25 were most relevant to hypoxic ischemic encephalopathy. Significant up-regulation of genes was confirmed by quantitative real-time polymerase chain reaction analysis of oxygen-glucose-deprived human fetal cortical neurons. Our results indicate that CSRNP1, DUSP5 and LRRC25, containing SNPs, may be involved in the pathogenesis of hypoxic ischemic encephalopathy. These findings indicate a novel direction for further hypoxic ischemic encephalopathy research. This animal study was approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Yunnan Province, China (approval No. kmmu2019038). Cerebral tissue collection from a human fetus was approved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval No. 2015-9).

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptome Sequencing to Detect Gene Fusions in Cancer

            Recurrent gene fusions, typically associated with hematological malignancies and rare bone and soft tissue tumors1, have been recently described in common solid tumors2–9. Here we employ an integrative analysis of high-throughput long and short read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept we successfully utilized integrative transcriptome sequencing to “re-discover” the BCR-ABL1 10 gene fusion in a chronic myelogenous leukemia cell line and the TMPRSS2-ERG 2,3 gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimeric transcripts in cancer cell lines and tumors. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimeras using high throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroprotection for ischemic stroke: past, present and future.

              Neuroprotection for ischemic stroke refers to strategies, applied singly or in combination, that antagonize the injurious biochemical and molecular events that eventuate in irreversible ischemic injury. There has been a recent explosion of interest in this field, with over 1000 experimental papers and over 400 clinical articles appearing within the past 6 years. These studies, in turn, are the outgrowth of three decades of investigative work to define the multiple mechanisms and mediators of ischemic brain injury, which constitute potential targets of neuroprotection. Rigorously conducted experimental studies in animal models of brain ischemia provide incontrovertible proof-of-principle that high-grade protection of the ischemic brain is an achievable goal. Nonetheless, many agents have been brought to clinical trial without a sufficiently compelling evidence-based pre-clinical foundation. At this writing, around 160 clinical trials of neuroprotection for ischemic stroke have been initiated. Of the approximately 120 completed trials, two-thirds were smaller early-phase safety-feasibility studies. The remaining one-third were typically larger (>200 subjects) phase II or III trials, but, disappointingly, only fewer than one-half of these administered neuroprotective therapy within the 4-6h therapeutic window within which efficacious neuroprotection is considered to be achievable. This fact alone helps to account for the abundance of "failed" trials. This review presents a close survey of the most extensively evaluated neuroprotective agents and classes and considers both the strengths and weakness of the pre-clinical evidence as well as the results and shortcomings of the clinical trials themselves. Among the agent-classes considered are calcium channel blockers; glutamate antagonists; GABA agonists; antioxidants/radical scavengers; phospholipid precursor; nitric oxide signal-transduction down-regulator; leukocyte inhibitors; hemodilution; and a miscellany of other agents. Among promising ongoing efforts, therapeutic hypothermia, high-dose human albumin therapy, and hyperacute magnesium therapy are considered in detail. The potential of combination therapies is highlighted. Issues of clinical-trial funding, the need for improved translational strategies and clinical-trial design, and "thinking outside the box" are emphasized.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                January 2020
                16 September 2019
                : 15
                : 1
                : 86-95
                Affiliations
                [1 ]Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
                [2 ]School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
                [3 ]Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
                [4 ]Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
                Author notes
                [* ] Correspondence to: Jia Liu, liujiaaixuexi@ 123456126.com ; Ting-Hua Wang, wangtinghua@ 123456vip.163.com .

                Author contributions: Research design: THW, LLXiong; model establishing, RNA-Seq and bioinformatics analysis: LLXiong, LLXue, MAH, JH, RZN, YXT, YX, JL; data analysis: LLXiong, LLXue, YYS; manuscript writing: LLXiong, LLXue; manuscript revising: THW, LLXiong, LLXue. All authors approved the final version of the paper.

                [#]

                Both authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-5678-7437
                http://orcid.org/0000-0003-2012-8936
                Article
                NRR-15-86
                10.4103/1673-5374.264469
                6862396
                31535656
                4a6ab045-ef65-4eec-94fa-258ec65bb2f5
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 16 August 2018
                : 24 April 2019
                Categories
                Research Article

                csrnp1,dusp5,gene ontology analysis,human fetal cortical neurons,lrrc25,mrna,neonatal hypoxic ischemic encephalopathy,pathogenesis,signaling pathway analysis

                Comments

                Comment on this article