28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cholesteryl Ester Transfer Protein : A Novel Target for Raising HDL and Inhibiting Atherosclerosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholesteryl ester transfer protein (CETP) promotes the transfer of cholesteryl esters from antiatherogenic HDLs to proatherogenic apolipoprotein B (apoB)-containing lipoproteins, including VLDLs, VLDL remnants, IDLs, and LDLs. A deficiency of CETP is associated with increased HDL levels and decreased LDL levels, a profile that is typically antiatherogenic. Studies in rabbits, a species with naturally high levels of CETP, support the therapeutic potential of CETP inhibition as an approach to retarding atherogenesis. Studies in mice, a species that lacks CETP activity, have provided mixed results. Human subjects with heterozygous CETP deficiency and an HDL cholesterol level >60 mg/dL have a reduced risk of coronary heart disease. Evidence that atherosclerosis may be increased in CETP-deficient subjects whose HDL levels are not increased is difficult to interpret and may reflect confounding or bias. Small-molecule inhibitors of CETP have now been tested in human subjects and shown to increase the concentration of HDL cholesterol while decreasing that of LDL cholesterol and apoB. Thus, it seems important and timely to test the hypothesis in randomized trials of humans that pharmacological inhibition of CETP retards the development of atherosclerosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation.

          The plasma cholesteryl-ester transfer protein (CETP) catalyzes the transfer of cholesteryl esters from high-density lipoprotein (HDL) to other lipoproteins. We recently described a Japanese family with increased HDL levels and CETP deficiency due to a splicing defect of the CETP gene. To assess the frequency and phenotype of this condition, we screened 11 additional families with high HDL levels by means of a radioimmunoassay for CETP and DNA analysis. We found the same CETP gene mutation in four families from three different regions of Japan. Analysis of restriction-fragment-length polymorphisms of the mutant CETP allele showed that all probands were homozygous for the identical haplotype. Family members homozygous for CETP deficiency (n = 10) had moderate hypercholesterolemia (mean total cholesterol level [+/- SD], 7.01 +/- 0.83 mmol per liter), markedly increased levels of HDL cholesterol (4.24 +/- 1.01 mmol per liter) and apolipoprotein A-I, and decreased levels of low-density lipoprotein cholesterol (1.99 +/- 0.80 mmol per liter) and apolipoprotein B. Members heterozygous for the deficiency (n = 20), whose CETP levels were in the lower part of the normal range, had moderately increased levels of HDL cholesterol and apolipoprotein A-I and an increased ratio of HDL subclass 2 to HDL subclass 3, as compared with unaffected family members (1.5 +/- 0.8 vs. 0.7 +/- 0.4). CETP deficiency was not found in six unrelated subjects with elevated HDL cholesterol levels who were from different parts of the United States. CETP deficiency appears to be a frequent cause of increased HDL levels in the population of Japan, possibly because of a founder effect. The results that we observed in heterozygotes suggest that CETP normally plays a part in the regulation of levels of HDL subclass 2. There was no evidence of premature atherosclerosis in the families with CETP deficiency. In fact, the lipoprotein profile of persons with CETP deficiency is potentially antiatherogenic and may be associated with an increased life span.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels.

            Plasma high density lipoprotein (HDL) levels are strongly genetically determined and show a general inverse relationship with coronary heart disease (CHD). The cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters from HDL to other lipoproteins and is a key participant in the reverse transport of cholesterol from the periphery to the liver. A high prevalence of two different CETP gene mutations (D442G, 5.1%; intron 14G:A, 0.5%), was found in 3,469 men of Japanese ancestry in the Honolulu Heart Program and mutations were associated with decreased CETP (-35%) and increased HDL chol levels (+10% for D442G). However, the overall prevalence of definite CHD was 21% in men with mutations and 16% in men without mutations. The relative risk (RR) of CHD was 1.43 in men with mutations (P 60 mg/dl men with and without mutations had low CHD prevalence. Thus, genetic CETP deficiency appears to be an independent risk factor for CHD, primarily due to increased CHD prevalence in men with the D442G mutation and HDL cholesterol between 41 and 60 mg/dl. The findings suggest that both HDL concentration and the dynamics of cholesterol transport through HDL (i.e., reverse cholesterol transport) determine the anti-atherogenicity of the HDL fraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits.

              Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.
                Bookmark

                Author and article information

                Journal
                Arteriosclerosis, Thrombosis, and Vascular Biology
                ATVB
                Ovid Technologies (Wolters Kluwer Health)
                1079-5642
                1524-4636
                February 2003
                February 2003
                : 23
                : 2
                : 160-167
                Affiliations
                [1 ]From the Hanson Institute and the Department of Cardiology (P.J.B.), Royal Adelaide Hospital, Adelaide, Australia; the National Heart, Lung, and Blood Institute (H.B.B. Jr), National Institutes of Health, Bethesda, Md; the National Institute for Health and Medical Research and Hopital de la Pitie (M.J.C.), Paris, France; the Preventive Cardiology and Lipid Clinic (D.J.R.), University of Pennsylvania Medical Center, Philadelphia; the Mount Sinai Medical Center–Miami Heart Institute and the...
                Article
                10.1161/01.ATV.0000054658.91146.64
                12588754
                4a717449-4170-4fac-b5b9-74adccdd2b16
                © 2003
                History

                Molecular medicine,Neurosciences
                Molecular medicine, Neurosciences

                Comments

                Comment on this article