8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases

      , ,
      Journal of Cellular Physiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress in COPD.

          Oxidative stress is now recognized as a major predisposing factor in the pathogenesis of COPD. Existing therapies for COPD are ineffective at halting disease progression, with bronchodilators being the mainstay of pharmacotherapy, providing symptomatic relief only. It is, therefore, important for a better understanding of the underlying mechanisms by which oxidative stress drives disease pathogenesis to develop novel and more effective therapies. Antioxidant capacity in COPD is substantially reduced as a result of cigarette smoking and exacerbations, with oxidative stress persisting long after the cessation of cigarette smoking or exacerbation, due to the continued production of reactive oxygen species from endogenous sources. We discuss (1) how oxidative stress arises in the lung, (2) how it is neutralized, (3) what genetic factors may predispose to the development of COPD, and (4) how this impacts inflammation and autoimmunity in the development of emphysema and small airways disease. Finally, various strategies have been considered to neutralize the increased oxidative burden present in COPD. This review highlights why current antioxidant strategies have so far failed and what promising alternatives are on the horizon. Moreover, a number of studies have shown that there is no single "magic bullet" to combat oxidative stress, but instead a combination therapy, targeting oxidative stress in the various subcellular compartments, may prove to be more effective in COPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of ATP secretion during immunogenic cell death.

            The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pannexins, a family of gap junction proteins expressed in brain.

              Database search has led to the identification of a family of proteins, the pannexins, which share some structural features with the gap junction forming proteins of invertebrates and vertebrates. The function of these proteins has remained unclear so far. To test the possibility that pannexins underlie electrical communication in the brain, we have investigated their tissue distribution and functional properties. Here, we show that two of these genes, pannexin 1 (Px1) and Px2, are abundantly expressed in the CNS. In many neuronal cell populations, including hippocampus, olfactory bulb, cortex and cerebellum, there is coexpression of both pannexins, whereas in other brain regions, e.g., white matter, only Px1-positive cells were found. On expression in Xenopus oocytes, Px1, but not Px2 forms functional hemichannels. Coinjection of both pannexin RNAs results in hemichannels with functional properties that are different from those formed by Px1 only. In paired oocytes, Px1, alone and in combination with Px2, induces the formation of intercellular channels. The functional characteristics of homomeric Px1 versus heteromeric Px1/Px2 channels and the different expression patterns of Px1 and Px2 in the brain indicate that pannexins form cell type-specific gap junctions with distinct properties that may subserve different functions.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Physiology
                J Cell Physiol
                Wiley-Blackwell
                00219541
                March 2018
                March 2018
                : 233
                : 3
                : 2075-2090
                Article
                10.1002/jcp.25906
                28295275
                4a74f63b-9ecc-4a6e-82ea-913df44b86af
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article