8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Accounting for technical noise in single-cell RNA-seq experiments.

          Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A functional perspective on phenotypic heterogeneity in microorganisms.

            Most microbial communities consist of a genetically diverse assembly of different organisms, and the level of genetic diversity plays an important part in community properties and functions. However, biological diversity also arises at a lower level of biological organization, between genetically identical cells that reside in the same microenvironment. In this Review, I outline the molecular mechanisms responsible for phenotypic heterogeneity and discuss how phenotypic heterogeneity allows genotypes to persist in fluctuating environments. I also describe how it promotes interactions between phenotypic subpopulations in clonal groups, providing microbial groups with new functionality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.

              Bacteria express many small RNAs for which the regulatory roles in pathogenesis have remained poorly understood due to a paucity of robust phenotypes in standard virulence assays. Here we use a generic 'dual RNA-seq' approach to profile RNA expression simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the molecular impact of bacterial riboregulators. We identify a PhoP-activated small RNA, PinT, which upon bacterial internalization temporally controls the expression of both invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity causes pervasive changes in coding and noncoding transcripts of the host. Interspecies correlation analysis links PinT to host cell JAK-STAT signalling, and we identify infection-specific alterations in multiple long noncoding RNAs. Our study provides a paradigm for a sensitive RNA-based analysis of intracellular bacterial pathogens and their hosts without physical separation, as well as a new discovery route for hidden functions of pathogen genes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Science and Business Media LLC
                2058-5276
                August 17 2020
                Article
                10.1038/s41564-020-0774-1
                32807892
                4a81f1b4-9e96-461d-8ef6-b3b3ab8f4464
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article