5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of disordered metabolic networks in postpartum dairy cows with left displacement of the abomasum through integrated metabolomics and pathway analyses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-producing dairy cows are easily affected by left displacement of the abomasum (LDA) within 4 weeks postpartum. Although LDA is highly associated with metabolic disturbances, the related information on comprehensive metabolic changes, with the exception of some blood biochemical parameters, remains limited. In this study, the changes in plasma metabolites and in the metabolic profile of postpartum dairy cows with LDA were investigated through liquid chromatography coupled with quadrupole time of flight mass spectrometry (LC-Q/TOF-MS)-based metabolomics, and the metabolic networks related to LDA were constructed through metabolomics pathway analysis (MetPA). An obvious change in the metabolic profile was reflected by significant variations in 68 plasma metabolites in postpartum dairy cows with LDA, and these variations consequently altered 13 metabolic pathways (histidine metabolism, tyrosine metabolism, valine, leucine and isoleucine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, tryptophan metabolism, synthesis and degradation of ketone bodies, linoleic acid metabolism, arachidonic acid metabolism, citrate cycle, butanoate metabolism, vitamin B 6 metabolism and pyrimidine metabolism). This study shows that the more detailed information obtained by LC-Q/TOF-MS-based metabolomics and MetPA might contribute to a better understanding of the disordered metabolic networks in postpartum dairy cows with LDA.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms.

          Liquid chromatography-mass spectrometry (LC-MS) methods are most often used for untargeted metabolomics and lipidomics. However, methods have not been standardized as accepted "best practice" documents, and reports lack harmonization with respect to quantitative data that enable interstudy comparisons. Researchers use a wide variety of high-resolution mass spectrometers under different operating conditions, and it is unclear if results would yield different biological conclusions depending on the instrument performance. To this end, we used 126 identical human plasma samples and 29 quality control samples from a nutritional intervention study. We investigated lipidomic data acquisitions across nine different MS instruments (1 single TOF, 1 Q/orbital ion trap, and 7 QTOF instruments). Sample preparations, chromatography conditions, and data processing methods were kept identical. Single-point internal standard calibrations were used to estimate absolute concentrations for 307 unique lipids identified by accurate mass, MS/MS spectral match, and retention times. Quantitative results were highly comparable between the LC-MS platforms tested. Using partial least-squares discriminant analysis (PLS-DA) to compare results between platforms, a 92% overlap for the most discriminating lipids based on variable importance in projection (VIP) scores was achieved for all lipids that were detected by at least two instrument platforms. Importantly, even the relative positions of individual samples on the PLS-DA projections were identical. The key for success in harmonizing results was to avoid ion saturation by carefully evaluating linear dynamic ranges using serial dilutions and adjusting the resuspension volume and/or injection volume before running actual study samples.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression

              Early detection is critical in prevention and treatment of kidney disease. However currently clinical laboratory and histopathological tests do not provide region-specific and accurate biomarkers for early detection of kidney disease. The present study was conducted to identify sensitive biomarkers for early detection and progression of tubulo-interstitial nephropathy in aristolochic acid I-induced rats at weeks 4, 8 and 12. Biomarkers were validated using aristolochic acid nephropathy (AAN) rats at week 24, adenine-induced chronic kidney disease (CKD) rats and CKD patients. Compared with control rats, AAN rats showed anemia, increased serum urea and creatinine, progressive renal interstitial fibrosis, activation of nuclear factor-kappa B, and up-regulation of pro-inflammatory, pro-oxidant, and pro-fibrotic proteins at weeks 8 and 12. However, no significant difference was found at week 4. Metabolomics identified 12-ketodeoxycholic acid, taurochenodesoxycholic acid, LPC(15:0) and docosahexaenoic acid as biomarkers for early detection of tubulo-interstitial nephropathy. With prolonging aristolochic acid I exposure, LPE(20:2), cholic acid, chenodeoxycholic acid and LPC(17:0) were identified as biomarkers for progression from early to advanced AAN and lysoPE(22:5), indoxyl sulfate, uric acid and creatinine as biomarkers of advanced AAN. These biomarkers were reversed by treatment of irbesartan and ergone in AAN rats at week 24 and adenine-induced CKD rats. In addition, these biomarkers were also reversed by irbesartan treatment in CKD patients.
                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                17 December 2019
                February 2020
                : 82
                : 2
                : 115-124
                Affiliations
                [1) ]Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
                Author notes
                [* ]Correspondence to: Guo, Y. S.: guoyansheng1978@ 123456163.com , Wei, F. H.: weifanhua999@ 123456163.com
                Article
                19-0378
                10.1292/jvms.19-0378
                7041990
                31852859
                4a8303f0-9afa-408d-9d35-7b2b2aab62ac
                ©2020 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 11 July 2019
                : 05 December 2019
                Categories
                Internal Medicine
                Full Paper

                left displacement of the abomasum,liquid chromatography coupled with quadrupole time of flight mass spectrometry,metabolomics,pathway analysis,postpartum dairy cow

                Comments

                Comment on this article