7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-genome reference of Dirofilaria immitis from Australia to determine single nucleotide polymorphisms associated with macrocyclic lactone resistance in the USA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For the past 30 years, chemoprophylaxis with macrocyclic lactone (ML) anthelmintics has been the primary strategy for canine heartworm ( Dirofilaria immitis) control in both the USA and Australia. ML-resistant D. immitis isolates have been confirmed to exist in the USA and studies have shown that 42 single nucleotide polymorphisms (SNPs) are associated with phenotypic ML-resistance. Currently, ML-resistance has not been reported in any Australian clinical cases of canine heartworm. The aim of the study is to determine whether the 42 SNPs associated with resistance to MLs in the isolates from the USA are present in adult heartworms from a clinical case in Australia. Five adult D. immitis obtained from a dog at post-mortem (Sydney, Australia) were sequenced using the Illumina sequencing technology. The genomic analyses revealed 6 out of the 42 SNPs associated with ML-resistance to be present in our samples, 3 out of the 6 SNPs identified were nonsynonymous SNPs but not in candidate genes for ML-resistance. ML-susceptibility profile was mixed using the 42-SNP and 10-SNP models, but the 5-SNP, 3-SNP and 2-SNP models demonstrated ML susceptibility for all five individuals. In this study, the first whole-genome reference of D. immitis from Australia establishes a new baseline for comparative studies and will be valuable for tracking ML-resistance emergence.

          Graphical abstract

          Highlights

          • Dirofilaria immitis from Sydney, Australia, sequenced using the Illumina NGS technology.

          • New baseline for comparative studies for tracking ML-resistance emergence in Australia.

          • Mixed ML-susceptibility profile using the 42-SNP and 10-SNP models.

          • 5-SNP, 3-SNP and 2-SNP models demonstrated ML susceptibility.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate short read alignment with Burrows–Wheeler transform

            Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

              We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Res Parasitol Vector Borne Dis
                Curr Res Parasitol Vector Borne Dis
                Current Research in Parasitology & Vector-borne Diseases
                Elsevier
                2667-114X
                13 January 2021
                2021
                13 January 2021
                : 1
                : 100007
                Affiliations
                [1]Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2006, Australia
                Author notes
                []Corresponding author. jan.slapeta@ 123456sydney.edu.au
                Article
                S2667-114X(21)00001-7 100007
                10.1016/j.crpvbd.2021.100007
                8906102
                4a8eb4df-ba8b-409f-bc37-d7dc8a2b2a82
                © 2021 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 December 2020
                : 3 January 2021
                : 5 January 2021
                Categories
                Research Article

                dirofilaria immitis,canine heartworm,sydney,resistance,snp,genomics

                Comments

                Comment on this article