9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of overlapping sound events using pitch cues and exploiting the stereo (multichannel) audio signal available at their ears to spatially localize these events. Traditionally SED systems have only been using mono channel audio, motivated by the human listener we propose to extend them to use multichannel audio. The proposed SED system is compared against the state of the art mono channel method on the development subset of TUT sound events detection 2016 database. The usage of spatial and harmonic features are shown to improve the performance of SED.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Speech Recognition with Deep Recurrent Neural Networks

          Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates \emph{deep recurrent neural networks}, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              TUT database for acoustic scene classification and sound event detection

                Bookmark

                Author and article information

                Journal
                2017-06-07
                Article
                1706.02293
                4a909b6b-b855-4b1f-96e9-11ce59e38f3f

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.SD cs.LG

                Artificial intelligence,Graphics & Multimedia design
                Artificial intelligence, Graphics & Multimedia design

                Comments

                Comment on this article