42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beam-searching and Transmission Scheduling in Millimeter Wave Communications

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Millimeter wave (mmW) wireless networks are capable to support multi-gigabit data rates, by using directional communications with narrow beams. However, existing mmW communications standards are hindered by two problems: deafness and single link scheduling. The deafness problem, that is, a misalignment between transmitter and receiver beams, demands a time consuming beam-searching operation, which leads to an alignment-throughput tradeoff. Moreover, the existing mmW standards schedule a single link in each time slot and hence do not fully exploit the potential of mmW communications, where directional communications allow multiple concurrent transmissions. These two problems are addressed in this paper, where a joint beamwidth selection and power allocation problem is formulated by an optimization problem for short range mmW networks with the objective of maximizing effective network throughput. This optimization problem allows establishing the fundamental alignment-throughput tradeoff, however it is computationally complex and requires exact knowledge of network topology, which may not be available in practice. Therefore, two standard-compliant approximation solution algorithms are developed, which rely on underestimation and overestimation of interference. The first one exploits directionality to maximize the reuse of available spectrum and thereby increases the network throughput, while imposing almost no computational complexity. The second one is a more conservative approach that protects all active links from harmful interference, yet enhances the network throughput by 100% compared to the existing standards. Extensive performance analysis provides useful insights on the directionality level and the number of concurrent transmissions that should be pursued. Interestingly, extremely narrow beams are in general not optimal.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Millimeter Wave Cellular Wireless Networks: Potentials and Challenges

          Millimeter wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low power micro- or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures and carrier aggregation can be leveraged in the mmW context.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gaussian Interference Channel Capacity to Within One Bit

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transmission Capacity of Ad Hoc Networks with Spatial Diversity

              , , (2008)
              This paper derives the outage probability and transmission capacity of ad hoc wireless networks with nodes employing multiple antenna diversity techniques, for a general class of signal distributions. This analysis allows system performance to be quantified for fading or non-fading environments. The transmission capacity is given for interference-limited uniformly random networks on the entire plane with path loss exponent \(\alpha>2\) in which nodes use: (1) static beamforming through \(M\) sectorized antennas, for which the increase in transmission capacity is shown to be \(\Theta(M^2)\) if the antennas are without sidelobes, but less in the event of a nonzero sidelobe level; (2) dynamic eigen-beamforming (maximal ratio transmission/combining), in which the increase is shown to be \(\Theta(M^{\frac{2}{\alpha}})\); (3) various transmit antenna selection and receive antenna selection combining schemes, which give appreciable but rapidly diminishing gains; and (4) orthogonal space-time block coding, for which there is only a small gain due to channel hardening, equivalent to Nakagami-\(m\) fading for increasing \(m\). It is concluded that in ad hoc networks, static and dynamic beamforming perform best, selection combining performs well but with rapidly diminishing returns with added antennas, and that space-time block coding offers only marginal gains.
                Bookmark

                Author and article information

                Journal
                1501.02516

                Numerical methods,Performance, Systems & Control,Information systems & theory

                Comments

                Comment on this article