2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ca2+ current of frog vestibular hair cells is modulated by intracellular ATP but not by long-lasting depolarisation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Some aspects of Ca(2+) channel modulation in hair cells isolated from semicircular canals of the frog (Rana esculenta) have been investigated using the whole-cell technique and intra and extracellular solutions designed to modify the basic properties of the Ca(2+) macrocurrent. With 1 mM ATP in the pipette solution, about 60% of the recorded cells displayed a Ca(2+) current constituted by a mix of an L and a drug-resistant (R2) component; the remaining 40% exhibited an additional drug-resistant fraction (R1), which inactivated in a Ca-dependent manner. If the pipette ATP was raised to 10 mM, cells exhibiting the R1 current fraction displayed an increase of both the R1 and L components by approximately 280 and approximately 70%, respectively, while cells initially lacking R1 showed a similar increase in the L component with R1 becoming apparent and raising up to a mean amplitude of approximately 44 pA. In both cell types the R2 current fraction was negligibly affect by ATP. The current run-up was unaffected by cyclic nucleotides, and was not triggered by 10 mM ATPgammaS, ADP, AMP or GTP. Long-lasting depolarisations (>5 s) produced a progressive, reversible decay in the inward current despite the presence of intracellular ATP. Ca(2+) channel blockade by Cd(2+) unmasked a slowly activating outward Cs(+) current flowing through a non-Ca(2+) channel type, which became progressively unblocked by prolonged depolarisation even though Cs(+) and TEA(+) were present on both sides of the channel. The outward current waveform could be erroneously ascribed to a Ca- and/or voltage dependence of the Ca(2+) macrocurrent.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels.

          Voltage-gated L-type Ca2+ channels (LTCCs) containing a pore-forming alpha1D subunit (D-LTCCs) are expressed in neurons and neuroendocrine cells. Their relative contribution to total L-type Ca2+ currents and their physiological role and significance as a drug target remain unknown. Therefore, we generated D-LTCC deficient mice (alpha1D-/-) that were viable with no major disturbances of glucose metabolism. alpha1D-/-mice were deaf due to the complete absence of L-type currents in cochlear inner hair cells and degeneration of outer and inner hair cells. In wild-type controls, D-LTCC-mediated currents showed low activation thresholds and slow inactivation kinetics. Electrocardiogram recordings revealed sinoatrial node dysfunction (bradycardia and arrhythmia) in alpha1D-/- mice. We conclude that alpha1D can form LTCCs with negative activation thresholds essential for normal auditory function and control of cardiac pacemaker activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells.

            Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, afferent synaptic transmission is triggered by spontaneous Ca2+ spikes of IHCs, which are under efferent cholinergic control. Around the onset of hearing, large-conductance Ca2+-activated K+ channels are acquired, and Ca2+ spikes as well as the cholinergic innervation are lost. Here, we performed patch-clamp measurements in IHCs of mice lacking the CaV1.3 channel (CaV1.3-/-) to investigate the role of this prevailing voltage-gated Ca2+ channel in IHC development and synaptic function. The small Ca2+ current remaining in IHCs from 3-week-old CaV1.3-/- mice was mainly mediated by L-type Ca2+ channels, because it was sensitive to dihydropyridines but resistant to inhibitors of non-L-type Ca2+ channels such as omega-conotoxins GVIA and MVIIC and SNX-482. Depolarization induced only marginal exocytosis in CaV1.3-/- IHC, which was solely mediated by L-type Ca2+ channels, whereas robust exocytic responses were elicited by photolysis of caged Ca2+. Secretion triggered by short depolarizations was reduced proportionally to the Ca2+ current, suggesting that the coupling of the remaining channels to exocytosis was unchanged. CaV1.3-/- IHCs lacked the Ca2+ action potentials and displayed a complex developmental failure. Most strikingly, we observed a continued presence of efferent cholinergic synaptic transmission and a lack of functional large-conductance Ca2+-activated K+ channels up to 4 weeks after birth. We conclude that CaV1.3 channels are essential for normal hair cell development and synaptic transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              G protein modulation of voltage-gated calcium channels.

              Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.
                Bookmark

                Author and article information

                Journal
                European Biophysics Journal
                Eur Biophys J
                Springer Science and Business Media LLC
                0175-7571
                1432-1017
                August 14 2007
                May 22 2007
                August 14 2007
                : 36
                : 7
                : 779-786
                Article
                10.1007/s00249-007-0172-0
                17516060
                4a97dc65-1f06-4678-b322-68c8b3659e63
                © 2007

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article