6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia Activates SOX5/Wnt/β-Catenin Signaling by Suppressing MiR-338-3p in Gastric Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs are known to be important in a variety of cancer types. The specific expression and roles of miR-338-3p in the context of gastric cancer, however, remains largely unknown. In this study, we found that miR-338-3p was expressed significantly lower in established/primary human gastric cancer cells than that in human gastric epithelial cells; miR-338-3p is also decreased in human gastric cancer tissues and was positively associated with the worse prognosis of patients with gastric cancer. Enforced expression of miR-338-3p could inhibit cell growth, survival, and proliferation, while inducing cell apoptosis. In addition, miR-338-3p negatively regulated SOX5 expression through directly binding to the 3′-untranslated region of SOX5, and an inverse correlation was found between miR-338-3p and SOX5 messenger RNA expression in gastric cancer tissues. Furthermore, miR-338-3p-induced inactivation of Wnt/β-catenin signaling was greatly abrogated by SOX5 upregulation. Finally, we found that hypoxic conditions were linked with reduced miR-338-3p expression in the context of gastric cancer. In conclusion, miR-338-3p acts as a tumor suppressor in gastric cancer, possibly by directly targeting SOX5 and blocking Wnt/β-catenin signaling. These findings might provide novel therapeutic targets for gastric cancer.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA biogenesis: coordinated cropping and dicing.

          V Kim (2005)
          The recent discovery of microRNAs (miRNAs) took many by surprise because of their unorthodox features and widespread functions. These tiny, approximately 22-nucleotide, RNAs control several pathways including developmental timing, haematopoiesis, organogenesis, apoptosis, cell proliferation and possibly even tumorigenesis. Among the most pressing questions regarding this unusual class of regulatory miRNA-encoding genes is how miRNAs are produced in cells and how the genes themselves are controlled by various regulatory networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs.

            The management of tumor cell invasion and metastasis is instrumental in cancer therapy, since metastases are the prime reason for cancer patient mortality. Various cellular mechanisms and underlying molecular pathways relevant for metastasis have been identified so far, providing a basis for antimetastatic drugs. MicroRNAs (miRNAs) are highly conserved, small noncoding RNA molecules that have been shown to regulate various cellular processes by interfering with protein expression through posttranscriptional repression or mRNA degradation. More importantly, beyond their roles in physiological processes, many miRNAs are aberrantly expressed in various pathologies including cancer and regulate tumor- and metastasis-associated genes. Their pivotal role in metastasis has emerged only recently. After an introduction into the mechanisms of miRNA action, this review article describes the roles of miRNAs in cancer invasion and metastasis. Various miRNAs are discussed with regard to their upstream regulators, downstream target genes, and pro-/antimetastatic effects. A table provides a comprehensive overview of miRNAs that are misregulated/relevant in metastasis and the current knowledge regarding their underlying molecular effects. Furthermore, therapeutic approaches based on miRNAs, either as drugs or as therapeutic targets, are described prior to the discussion of the delivery of miRNA-based therapeutics as novel strategy in antimetastatic treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma

              The Wnt/β-catenin signaling is abnormally activated in the progression of hepatocellular carcinoma (HCC). BCL9 is an essential co-activator in the Wnt/β-catenin signaling. Importantly, BCL9 is absent from tumors originating from normal cellular counterparts and overexpressed in many cancers including HCC. But the mechanism for BCL9 overexpression remains unknown. Ample evidence indicates that hypoxia inducible factors (HIFs) play a role in the development of HCC. It was found in our study that BCL9 was overexpressed in both primary HCC and bone metastasis specimens; loss of BCL9 inhibited the proliferation, migration and angiogenesis of HCC; and that that hypoxia mechanically induced the expression of BCL9. BCL9 induction under the hypoxic condition was predominantly mediated by HIF-1α but not HIF2α. In vitro evidence from xenograft models indicated that BCL9 promoter/gene knockout inhibited HCC tumor growth and angiogenesis. Notably, we found that BCL9 and HIF-1α were coordinately regulated in human HCC specimen. The above findings suggest that hypoxia may promote the expression of BCL9 and associate with the development of HCC. Specific regulation of BCL9 expression by HIF-1α may prove to be an underlying crosstalk between Wnt/β-catenin signaling and hypoxia signaling pathways.
                Bookmark

                Author and article information

                Journal
                Technol Cancer Res Treat
                Technol. Cancer Res. Treat
                TCT
                sptct
                Technology in Cancer Research & Treatment
                SAGE Publications (Sage CA: Los Angeles, CA )
                1533-0346
                1533-0338
                27 March 2020
                2020
                : 19
                : 1533033820905825
                Affiliations
                [1 ]Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
                [2 ]Breast Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
                [3 ]Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
                [4 ]Gastroenterology Department, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
                Author notes
                [*]Hua Shi, Gastroenterology Department, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, China. Email: 624985248@ 123456qq.com
                Author information
                https://orcid.org/0000-0002-3465-9116
                Article
                10.1177_1533033820905825
                10.1177/1533033820905825
                7119234
                32216582
                4a9eee81-bae7-4097-a6fb-c6b84635262e
                © The Author(s) 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 29 August 2019
                : 12 October 2019
                : 08 November 2019
                Categories
                Original Article
                Custom metadata
                January-December 2020
                ts3

                mir-338-3p,proliferation,sox5,·gastric cancer,wnt signaling

                Comments

                Comment on this article