43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies

      research-article
      Frontiers in Physiology
      Frontiers Media S.A.
      myopathy, striated muscle, force-velocity relationship, actomyosin, heart, skeletal muscle

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Familial hypertrophic cardiomyopathy (HCM), due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g., in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray, and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g., hypertension), mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: (1) contractile instabilities within each sarcomere (with more than one stable velocity for a given load), (2) different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.

          Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis.

            The aim of this systematic review was to determine if eccentric exercise is superior to concentric exercise in stimulating gains in muscle strength and mass. Meta-analyses were performed for comparisons between eccentric and concentric training as means to improve muscle strength and mass. In order to determine the importance of different parameters of training, subgroup analyses of intensity of exercise, velocity of movement and mode of contraction were also performed. Twenty randomised controlled trials studies met the inclusion criteria. Meta-analyses showed that when eccentric exercise was performed at higher intensities compared with concentric training, total strength and eccentric strength increased more significantly. However, compared with concentric training, strength gains after eccentric training appeared more specific in terms of velocity and mode of contraction. Eccentric training performed at high intensities was shown to be more effective in promoting increases in muscle mass measured as muscle girth. In addition, eccentric training also showed a trend towards increased muscle cross-sectional area measured with magnetic resonance imaging or computerised tomography. Subgroup analyses suggest that the superiority of eccentric training to increase muscle strength and mass appears to be related to the higher loads developed during eccentric contractions. The specialised neural pattern of eccentric actions possibly explains the high specificity of strength gains after eccentric training. Further research is required to investigate the underlying mechanisms of this specificity and its functional significance in terms of transferability of strength gains to more complex human movements.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Muscle structure and theories of contraction.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                15 September 2014
                2014
                : 5
                : 350
                Affiliations
                Department of Chemistry and Biomedical Sciences, Linnaeus University Kalmar, Sweden
                Author notes

                Edited by: Julien Ochala, KIng's College London, UK

                Reviewed by: Leonardo F. Ferreira, University of Florida, USA; Charles S. Chung, University of Kentucky, USA

                *Correspondence: Alf Månsson, Department of Chemistry and Biomedical Sciences, Linnaeus University, Norra vägen 49, Kalmar, SE-391 82, Sweden e-mail: alf.mansson@ 123456lnu.se

                This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00350
                4163974
                4aa276b7-6d03-4f51-9c86-ae86d6b6d2a3
                Copyright © 2014 Månsson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 June 2014
                : 26 August 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 102, Pages: 10, Words: 9593
                Categories
                Physiology
                Hypothesis and Theory Article

                Anatomy & Physiology
                myopathy,striated muscle,force-velocity relationship,actomyosin,heart,skeletal muscle

                Comments

                Comment on this article