1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA Binding Proteins As Regulators of Oxidative Stress Identified by a Targeted CRISPR-Cas9 Single Guide RNA Library

      research-article
      , *
      The CRISPR Journal
      Mary Ann Liebert, Inc., publishers

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome editing system has been broadly adopted for high-throughput genetic screens. However, the application of genome-wide single guide RNA (sgRNA) libraries can be challenging. We generated a custom sgRNA library, an order of magnitude smaller than genome-wide alternatives, to facilitate the genetic screening of RNA binding proteins (RBPs). We demonstrated the utility of our reagent in a genetic screen for RBPs that conveyed cellular resistance or sensitivity to oxidative stress induced by paraquat. This identified that CSDE1 and STRAP, proteins that interact with each other, convey sensitivity to oxidative stress and that Pumilio homologues (PUM1 and PUM2) convey resistance. Targeting eIF4-E1 and -A1 protected cells from high-dose paraquat, whereas eIF4E2 targeted cells did less well. We also found that G3BP1 promoted sensitivity to a low dose of paraquat but protected cells at a higher dose. Our study highlights the use of genetic screens to identify roles of RBPs and identifies novel genes regulating sensitivity to oxidative stress.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Differential expression analysis for sequence count data

          High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

            CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), Cas9 can be reprogrammed to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently-devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The integrated stress response.

              In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
                Bookmark

                Author and article information

                Journal
                CRISPR J
                CRISPR J
                crispr
                The CRISPR Journal
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2573-1599
                2573-1602
                June 2021
                16 June 2021
                16 June 2021
                : 4
                : 3
                : 427-437
                Affiliations
                [1]Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
                Author notes
                [*] [ * ]Address correspondence to: Martin Turner, Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom, martin.turner@ 123456babraham.ac.uk
                Author information
                https://orcid.org/0000-0002-3801-9896
                Article
                10.1089/crispr.2020.0116
                10.1089/crispr.2020.0116
                8236562
                34096786
                4aa4070c-51a8-4cc1-a5d3-07ca36147da1
                © David J. Turner and Martin Turner, 2021; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 5, References: 37, Pages: 11
                Categories
                Research Articles

                Comments

                Comment on this article