25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Small Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy With Intraepidermal Nerve Fiber Density

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard.

          RESEARCH DESIGN AND METHODS

          Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy.

          RESULTS

          Manual and automated corneal nerve fiber density (CNFD) ( P < 0.0001), branch density (CNBD) ( P < 0.0001) and length (CNFL) ( P < 0.0001), and IENFD ( P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly ( P = 0.14).

          CONCLUSIONS

          This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surrogate markers of small fiber damage in human diabetic neuropathy.

            Surrogate markers of diabetic neuropathy are being actively sought to facilitate the diagnosis, measure the progression, and assess the benefits of therapeutic intervention in patients with diabetic neuropathy. We have quantified small nerve fiber pathological changes using the technique of intraepidermal nerve fiber (IENF) assessment and the novel in vivo technique of corneal confocal microscopy (CCM). Fifty-four diabetic patients stratified for neuropathy, using neurological evaluation, neurophysiology, and quantitative sensory testing, and 15 control subjects were studied. They underwent a punch skin biopsy to quantify IENFs and CCM to quantify corneal nerve fibers. IENF density (IENFD), branch density, and branch length showed a progressive reduction with increasing severity of neuropathy, which was significant in patients with mild, moderate, and severe neuropathy. CCM also showed a progressive reduction in corneal nerve fiber density (CNFD) and branch density, but the latter was significantly reduced even in diabetic patients without neuropathy. Both IENFD and CNFD correlated significantly with cold detection and heat as pain thresholds. Intraepidermal and corneal nerve fiber lengths were reduced in patients with painful compared with painless diabetic neuropathy. Both IENF and CCM assessment accurately quantify small nerve fiber damage in diabetic patients. However, CCM quantifies small fiber damage rapidly and noninvasively and detects earlier stages of nerve damage compared with IENF pathology. This may make it an ideal technique to accurately diagnose and assess progression of human diabetic neuropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients.

              The accurate detection, characterization and quantification of human diabetic neuropathy are important to define at risk patients, anticipate deterioration, and assess new therapies. Corneal confocal microscopy is a reiterative, rapid, non-invasive in vivo clinical examination technique capable of imaging corneal nerve fibres. The aim of this study was to define the ability of this technique to quantify the extent of degeneration and regeneration of corneal nerve fibres in diabetic patients with increasing neuropathic severity. We scanned the cornea and collected images of Bowman's layer (containing a rich nerve plexus) from 18 diabetic patients and 18 age-matched control subjects. Corneal nerve fibre density (F(3)=9.6, p<0.0001), length (F(3)=23.8, p<0.0001), and branch density (F(3)=13.9, p<0.0001) were reduced in diabetic patients compared with control subjects, with a tendency for greater reduction in these measures with increasing severity of neuropathy. Corneal confocal microscopy is a rapid, non-invasive in vivo clinical examination technique which accurately defines the extent of corneal nerve damage and repair and acts as a surrogate measure of somatic neuropathy in diabetic patients. It could represent an advance to define the severity of neuropathy and expedite assessment of therapeutic efficacy in clinical trials of human diabetic neuropathy.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                June 2015
                20 March 2015
                : 38
                : 6
                : 1138-1144
                Affiliations
                [1] 1Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester, U.K.
                [2] 2Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K.
                [3] 3Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
                [4] 4Department of Clinical Neurophysiology, Central Manchester NHS Foundation Trust, Manchester, U.K.
                [5] 5Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
                Author notes
                Article
                2422
                10.2337/dc14-2422
                4439535
                25795415
                4aa58342-d74c-4f92-8e70-21beaf545f75
                © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
                History
                : 13 October 2014
                : 26 February 2015
                Page count
                Pages: 7
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: R105991
                Funded by: Juvenile Diabetes Research Foundation International http://dx.doi.org/10.13039/100000901
                Award ID: 27-2008-362
                Categories
                Pathophysiology/Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article