2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Equine Gingiva: A Gross Anatomical Evaluation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Equine periodontal disease (ePD) usually starts with food impaction, formation of diastemata, gingival inflammation and formation of periodontal pockets. This process proceeds toward the dentoalveolar space, causing detachment of tooth supporting periodontal fibers. Although several therapeutical procedures have been proposed, ePD is often only diagnosed in advanced stages, requiring dental extraction. A similar dilemma has been observed in small animal medicine, but has been overcome by the introduction of reliable examination protocols for the early diagnosis of periodontal diseases (PD). These protocols are based on detailed anatomical descriptions of healthy gingiva, allowing for the determination of the pathognomonic signs of the onset of PD and providing a basis for grading systems and treatment plans. Consequently, proposals have also been made for periodontal examination protocols in horses. However, these protocols were widely adopted from small animal medicine assuming a similar anatomy of the equine and canine gingiva. To provide a solid anatomical basis for equine specific periodontal examinations, 20 equine heads were examined macroscopically, with special attention to the gingival sulcus, the gingival margin and the interdental papillae. Constant morphological patterns of the gingival margin and the interdental papillae were found for the vestibular and lingual/palatal aspects of the upper and lower cheek teeth arcades, as well as for the incisor arcades. A gingival sulcus measuring greater than 1 mm was present in only 6% of the investigated specimens. The inspection of the gingival margin and the interdental papillae, as well as the recognition of a gingival sulcus, may serve as criteria to establish equine specific periodontal investigation protocols.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The periodontal pocket: pathogenesis, histopathology and consequences

          The conversion of junctional epithelium to pocket epithelium is regarded as a hallmark in the development of periodontitis. Knowledge of factors contributing to the initiation and progression of pocket formation is important and may result in the development of better preventive measures and improve healing outcomes after therapeutic interventions. The periodontal pocket is a pathologically deepened gingival sulcus. In healthy periodontal conditions, the defense mechanisms are generally sufficient to control the constant microbiological challenge through a normally functioning junctional epithelium and the concentrated powerful mass of inflammatory and immune cells and macromolecules transmigrating through this epithelium. In contrast, destruction of the structural integrity of the junctional epithelium, which includes disruption of cell-to-cell contacts and detachment from the tooth surface, consequently leading to pocket formation, disequilibrates this delicate defense system. Deepening of the pocket apically, and also horizontal expansion of the biofilm on the tooth root, puts this system to a grueling test. There is no more this powerful concentration of defense cells and macromolecules that are discharged at the sulcus bottom and that face a relatively small biofilm surface in the gingival sulcus. In a pocket situation, the defense cells and the macromolecules are directly discharged into the periodontal pocket and the majority of epithelial cells directly face the biofilm. The thinning of the epithelium and its ulceration increase the chance for invasion of microorganisms and their products into the soft connective tissue and this aggravates the situation. Depending on the severity and duration of disease, a vicious circle may develop in the pocket environment, which is difficult or impossible to break without therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses.

            A new approach of reconstructing ungulate diet, the mesowear method, was recently introduced by Fortelius and Solounias ([2000] Am Mus Novitat 3301:1-36). Mesowear is based on facet development on the occlusal surfaces of the teeth. Restricting mesowear investigation to maxillary cheek teeth would allow mesowear investigation only in assemblages of large numbers of individuals and therefore would generally restrict this method to relatively few assemblages of recent and fossil ungulates. Most of the fossil, subfossil, and recent ungulate osteological assemblages that may be assigned to a single taxon have smaller numbers of individuals. This results in a demand to extend the mesowear method to further tooth positions in order to obtain stable dietary classifications of fossil taxa. The focus of this article is to test if a consistent mesowear classification is obtainable for mandibular as well as for maxillary teeth. For statistical testing, large assemblages of isolated cheek teeth of the Vallesian hipparionine horse Hippotherium primigenium and of the recent zebra Equus burchelli were employed as models. The upper tooth positions P4, M1, M2, and M3 as suggested by Kaiser and Solounias (2003) as the model for the "extended" mesowear method and the lower tooth positions P4-M3 were tested for their consistency in classification of the mesowear variables. We found a considerable shift of the mesowear signature towards the grazing edge of the mesowear continuum in lower cheek teeth. In order to adjust the signal of lower teeth to the signal of the upper teeth, a calibration factor was introduced which allowed incorporation of lower cheek teeth into the same model of mesowear investigation together with upper cheek teeth. We propose that this model is particularly suited for the reconstruction of paleodiets in hypsodont hipparionine and equine equids. We further investigated the functional relation between the mesowear profiles and the distribution of dental tissues along the course of the occlusal contact. We therefore correlated mesowear profiles with enamel distribution profiles and found the mesowear profile to be strongly controlled by the attritional environment encountered by a given apex area. The differential signal observed in cusp apex morphology between upper and lower cheek teeth was found to be more closely related to attrition by the antagonistic tooth than to the distribution of dental tissues in the tooth under consideration. The results suggest a general extension of the mesowear method of paleodiet reconstruction and a basic scenario for the evolution of anisodont dentitions. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Canine periodontitis: the dog as an important model for periodontal studies.

              Periodontal disease (PD) refers to a group of inflammatory diseases caused by bacterial plaque in the periodontium and ranges from an early stage (gingivitis) to an advanced stage (periodontitis). It is a multifactorial disease that results from the interaction of the host defence mechanisms with the plaque microorganisms. Early detection, diagnosis and treatment are essential in the control of this disease. PD has an enormous impact on human and veterinary medicine due to its high prevalence. The most common animal PD models use dogs and non-human primates, although other animals (rats, mice, hamsters, rabbits, miniature pigs, ferrets, and sheep) have also been employed. Dog models have contributed significantly to the current understanding of periodontology. The most important clinical aspects of canine PD are considered in this review and the various animal models are examined with an emphasis on the role of the dog as the most useful approach for understanding human PD and in the development of new therapeutic and preventive measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                04 October 2019
                2019
                : 6
                : 322
                Affiliations
                [1] 1Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen , Giessen, Germany
                [2] 2Clinic of Equine Surgery, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen , Giessen, Germany
                [3] 3Vetsuisse Faculty, Equine Hospital, University of Zurich , Zurich, Switzerland
                [4] 4Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen , Giessen, Germany
                Author notes

                Edited by: Padraic Martin Dixon, University of Edinburgh, United Kingdom

                Reviewed by: John Mark O. Leary, University College Dublin, Ireland; Robert Michael Baratt, Salem Valley Veterinary Clinic, United States

                *Correspondence: Saskia Steinfort saskia.alina@ 123456gmail.com

                This article was submitted to Veterinary Dentistry and Oromaxillofacial Surgery, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2019.00322
                6787712
                4ab96483-3f17-4d8b-9985-a628c9759f1b
                Copyright © 2019 Steinfort, Obach-Schröck, Röcken, Theiss, Failing, Vogelsberg and Staszyk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 June 2019
                : 09 September 2019
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 42, Pages: 8, Words: 5330
                Categories
                Veterinary Science
                Original Research

                gingival margin,gingival sulcus,horse,interdental papilla,periodontium

                Comments

                Comment on this article