69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Ppd-1 genes on durum wheat flowering time and grain filling duration in a wide range of latitudes

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Understanding the effect of genetic factors controlling flowering time is essential to fine-tune crop development to each target environment and to maximize yield. A set of 35 durum wheat genotypes of spring growth-habit involving different allelic combinations at Ppd-A1 and Ppd-B1 genes was grown for 2 years at four sites at latitudes ranging from 19°N to 41°N. The emergence-flowering period was reduced from north to south. The frequency in the collection of the insensitive allele GS-105 at Ppd-A1 was greater (34%) than that of allele GS-100 (20%). Genotypes that flowered earlier due to the presence of alleles causing photoperiod insensitivity extended their grain-filling period, but less than the shortening in flowering time. The effect of the allele conferring photoperiod sensitivity at Ppd-A1 was stronger than that at Ppd-B1 ( Ppd-A1b > Ppd-B1b). The effect of photoperiod insensitivity alleles was classified as GS-100 > GS-105 > Ppd-B1a. The phenotypic expression of alleles conferring photoperiod insensitivity at Ppd-A1 increased at sites with average day length from emergence to flowering lower than 12 h. An interaction effect was found between Ppd-A1 and Ppd-B1. Differences between allelic combinations in flowering time accounted for c. 66% of the variability induced by the genotype effect, with the remaining 34% being explained by genes controlling earliness per se. The shortest flowering time across sites corresponded to the allelic combination GS-100/ Ppd-B1a, which reduced flowering time by 11 days irrespective of the Ppd-A1b/Ppd-B1b combination. The current study marks a further step towards elucidation of the phenotypic expression of genes regulating photoperiod sensitivity and their interaction with the environment.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          A decimal code for the growth stages of cereals

            • Record: found
            • Abstract: not found
            • Article: not found

            Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics.

              • Record: found
              • Abstract: found
              • Article: not found

              The wheat and barley vernalization gene VRN3 is an orthologue of FT.

              L. Yan, D. Fu, C LI (2006)
              Winter wheat and barley varieties require an extended exposure to low temperatures to accelerate flowering (vernalization), whereas spring varieties do not have this requirement. In this study, we show that in these species, the vernalization gene VRN3 is linked completely to a gene similar to Arabidopsis FLOWERING LOCUS T (FT). FT induction in the leaves results in a transmissible signal that promotes flowering. Transcript levels of the barley and wheat orthologues, designated as HvFT and TaFT, respectively, are significantly higher in plants homozygous for the dominant Vrn3 alleles (early flowering) than in plants homozygous for the recessive vrn3 alleles (late flowering). In wheat, the dominant Vrn3 allele is associated with the insertion of a retroelement in the TaFT promoter, whereas in barley, mutations in the HvFT first intron differentiate plants with dominant and recessive VRN3 alleles. Winter wheat plants transformed with the TaFT allele carrying the promoter retroelement insertion flowered significantly earlier than nontransgenic plants, supporting the identity between TaFT and VRN-B3. Statistical analyses of flowering times confirmed the presence of significant interactions between vernalization and FT allelic classes in both wheat and barley (P < 0.0001). These interactions were supported further by the observed up-regulation of HvFT transcript levels by vernalization in barley winter plants (P = 0.002). These results confirmed that the wheat and barley FT genes are responsible for natural allelic variation in vernalization requirement, providing additional sources of adaptive diversity to these economically important crops.

                Author and article information

                Journal
                The Journal of Agricultural Science
                J. Agric. Sci.
                Cambridge University Press (CUP)
                0021-8596
                1469-5146
                May 2016
                August 04 2015
                May 2016
                : 154
                : 4
                : 612-631
                Article
                10.1017/S0021859615000507
                4abf268b-89a6-4f7c-8324-d287670a03d7
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log