1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hesperidin: A Therapeutic Agent For Obesity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is a chronic metabolic disease caused by multiple factors and is considered to be a risk factor for type 2 diabetes, cardiovascular disease, hypertension, stroke and various cancers. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory effect against obesity diseases. Our review discusses mechanisms of hesperidin in the treatment of obesity. Hesperidin regulates lipid metabolism and glucose metabolism by mediating AMPK and PPAR signaling pathways, directly regulates antioxidant index and anti-apoptosis, and indirectly mediates NF-κB signaling pathway to regulate inflammation to play a role in the treatment of obesity. In addition, hesperidin-enriched dietary supplements can significantly improve symptoms such as postprandial hyperglycemia and hyperlipidemia. Further clinical trials are also required for confirming lipid-lowering efficacy of this natural flavonoid and evaluating its safety profile.

          Related collections

          Most cited references 91

          • Record: found
          • Abstract: found
          • Article: not found

          Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats.

          Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). The present study was hypothesized to investigate the beneficial effects of hesperidin and naringin on hyperglycemia-induced oxidative damage in HFD/STZ-induced diabetic rats. Diabetes was induced by feeding rats with an HFD for 2 weeks followed by an intraperitoneal injection of STZ (35 mg/kg body weight). An oral dose of 50mg/kg hesperidin or naringin was daily given for 4 weeks after diabetes induction. At the end of the experimental period, blood was obtained from jugular vein and livers were rapidly excised and homogenized for biochemical assays. In the diabetic control group, levels of glucose, glycosylated hemoglobin (HbA1c%), MDA, NO, TNF-α and IL-6 were significantly increased, while serum insulin, GSH, vitamin C, and vitamin E levels were decreased. Both hesperidin and naringin administration significantly reversed these alterations. Moreover, supplementation with either compound significantly ameliorated serum and liver MDA, NO and glutathione, and liver antioxidant enzymes. Although detailed studies are required for the evaluation of the exact mechanism of the ameliorative effects of hesperidin and naringin against diabetic complications, these preliminary experimental findings demonstrate that both hesperidin and naringin exhibit antidiabetic effects in a rat model of T2DM by potentiating the antioxidant defense system and suppressing proinflammatory cytokine production. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases.

            Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from citrus species that have various biological properties, particularly those for the prevention of cancer and cardiovascular diseases. Studies have shown both anti-cancer and cancer chemopreventive effects for Hsd and Hst. Cancer chemopreventive properties of Hsd and Hst are mainly associated with their antioxidant, radical scavenging and anti-inflammatory activities. In addition, Hsd and Hst interfere at different stages of cancer. Unlike conventional anti-cancer drugs, Hsd and Hst inhibit tumor growth by targeting multiple cellular protein targets at the same time, including caspases, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2 associated X protein) for the induction of apoptosis, and COX-2 (cyclooxygenase-2), MMP-2 (matrix metalloproteinase-2) and MMP-9 for the inhibition of angiogenesis and metastasis. The results of the recent basic and clinical studies revealed the beneficial effects for Hst, Hsd and their derivatives in the treatment of heart failure and cardiac remodeling, myocardial ischemia and infarction, and hypertension. In addition, the valuable effects of Hst and Hsd in the treatment of diabetes and dyslipidemia with their anti-platelet and anticoagulant effects make them good candidates in the treatment of various cardiovascular diseases. In this review, new findings regarding the molecular targets of Hsd and Hst, animal studies and clinical trials are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Citrus flavonoids and lipid metabolism.

              Citrus flavonoids are polyphenolic compounds with powerful biological properties. This review aims to summarize recent advances towards understanding the ability of citrus flavonoids to regulate lipid metabolism and other metabolic parameters relevant to the metabolic syndrome, type 2 diabetes and cardiovascular disease. Citrus flavonoids, including naringenin, hesperidin, nobiletin and tangeretin, have emerged as promising therapeutic agents for the treatment of metabolic dysregulation. Epidemiological studies report that intake of citrus flavonoid-containing foods attenuates cardiovascular diseases. Experimental and a limited number of clinical studies reveal lipid-lowering, insulin-sensitizing, antihypertensive and anti-inflammatory properties. In animal models, citrus flavonoid supplements prevent hepatic steatosis, dyslipidemia and insulin sensitivity primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose tissue, kidney and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters and also through direct impact on the vessel wall. These recent studies suggest an important role of citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity and atherosclerosis. The favorable outcomes are achieved through multiple mechanisms. Human studies focussed on dose, bioavailability, efficacy and safety are required to propel the use of these promising therapeutic agents into the clinical arena.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                12 November 2019
                2019
                : 13
                : 3855-3866
                Affiliations
                [1 ]School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu, 611137, People’s Republic of China
                [2 ]Sichuan Fuzheng Pharmaceutical Co. Ltd , Sichuan, People’s Republic of China
                [3 ]Sichuan Fermentation Traditional Chinese Medicine Engineering Research Center , Chengdu, People’s Republic of China
                [4 ]State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine , Chengdu 611137, People’s Republic of China
                Author notes
                Correspondence: Qinwan Huang College of Pharmacy, Chengdu University of Traditional Chinese Medicine , No. 1166, Liutai Road, Wenjiang District, Chengdu611137, People’s Republic of ChinaTel +86 13982199974Fax +61800231 Email hqwan2163@163.com
                Article
                227499
                10.2147/DDDT.S227499
                6859214
                © 2019 Xiong et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 4, Tables: 1, References: 104, Pages: 12
                Categories
                Review

                Comments

                Comment on this article