4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Male Remating Success and the Frequency of Copulatory Plugs in the Green Lynx SpiderPeucetia viridans(Araneae, Oxyopidae)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peucetia viridansmales were allowed to mate with three virgin females and most matings resulted in live spiderlings, even when males lacked palpal paracymbial processes. Among females, the presence of copulatory plugs was inconsistent, and when present, their condition was not uniform; broken-off male paracymbia were often found in epigynal orifices. There was no size effect in a male's ability to completely plug a female's genital orifices, as well as no significant change in the pattern of plug production over consecutive mating trials. Among mated, field-collected females, the presence of plugs and paracymbia was variable, with females from some sites possessing neither structure. Field-collected females with no plugs were in significantly better condition than those with two plugs and in nearly significantly better condition than those with two paracymbia. Females in the best condition may excel at resisting the emplacement of genital obstructions and/or voiding such structures, potentially enabling them to mate with multiple males. Enhanced prey access mediated by increased water availability may be why females at two sites were in relatively better condition. If plugs help prevent sperm desiccation in inseminated females, this may have contributed to the absence of plugs from females at these two moister sites.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          SPERM COMPETITION AND ITS EVOLUTIONARY CONSEQUENCES IN THE INSECTS

           G. A. Parker (1970)
          Biological Reviews, 45(4), 525-567
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why do females mate multiply? A review of the genetic benefits.

            The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of polyandry: multiple mating and female fitness in insects.

              Theory suggests that male fitness generally increases steadily with mating rate, while one or a few matings are sufficient for females to maximize their reproductive success. Contrary to these predictions, however, females of the majority of insects mate multiply. We performed a meta-analysis of 122 experimental studies addressing the direct effects of multiple mating on female fitness in insects. Our results clearly show that females gain directly from multiple matings in terms of increased lifetime offspring production. Despite a negative effect of remating on female longevity in species without nuptial feeding, the positive effects (increased egg production rate and fertility) more than outweigh this negative effect for moderate mating rates. The average direct net fitness gain of multiple mating was as high as 30-70%. Therefore, the evolutionary maintenance of polyandry in insects can be understood solely in terms of direct effects. However, our results also strongly support the existence of an intermediate optimal female mating rate, beyond which a further elevated mating rate is deleterious. The existence of such optima implies that sexual conflict over the mating rate should be very common in insects, and that sexually antagonistic coevolution plays a key role in the evolution of mating systems and of many reproductive traits. We discuss the origin and maintenance of nuptial feeing in the light of our findings, and suggest that elaborate and nutritional ejaculates may be the result of sexually antagonistic coevolution. Future research should aim at gaining a quantitative understanding of the evolution of female mating rates. Copyright 2000 The Association for the Study of Animal Behaviour.
                Bookmark

                Author and article information

                Journal
                Psyche: A Journal of Entomology
                Psyche: A Journal of Entomology
                Hindawi Limited
                0033-2615
                1687-7438
                2010
                2010
                : 2010
                :
                : 1-10
                Article
                10.1155/2010/602897
                © 2010

                Comments

                Comment on this article