13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes

      , , ,
      Microscopy Research and Technique
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event. Copyright 2009 Wiley-Liss, Inc.

          Related collections

          Most cited references472

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic instability in mice lacking histone H2AX.

          Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role of Plzf in maintenance of spermatogonial stem cells.

            Little is known of the molecular mechanisms whereby spermatogonia, mitotic germ cells of the testis, self-renew and differentiate into sperm. Here we show that Zfp145, encoding the transcriptional repressor Plzf, has a crucial role in spermatogenesis. Zfp145 expression was restricted to gonocytes and undifferentiated spermatogonia and was absent in tubules of W/W(v) mutants that lack these cells. Mice lacking Zfp145 underwent a progressive loss of spermatogonia with age, associated with increases in apoptosis and subsequent loss of tubule structure but without overt differentiation defects or loss of the supporting Sertoli cells. Spermatogonial transplantation experiments revealed a depletion of spermatogonial stem cells in the adult. Microarray analysis of isolated spermatogonia from Zfp145-null mice before testis degeneration showed alterations in the expression profile of genes associated with spermatogenesis. These results identify Plzf as a spermatogonia-specific transcription factor in the testis that is required to regulate self-renewal and maintenance of the stem cell pool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization

              A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).
                Bookmark

                Author and article information

                Journal
                Microscopy Research and Technique
                Microsc. Res. Tech.
                Wiley
                1059910X
                April 2010
                April 2010
                November 25 2009
                : 73
                : 4
                : 241-278
                Article
                10.1002/jemt.20783
                19941293
                4ad7f41a-5315-45b2-9cae-8e2db2a133f7
                © 2009

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article